Weak-field magnetic bands in superlattices and the single-band approximation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 224989
(http://iopscience.iop.org/0305-4470/22/22/024)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 13:41

Please note that terms and conditions apply.

Weak-field magnetic bands in superlattices and the single-band approximation

Vincenzo Grecchi† and Andrea Sacchetti \ddagger
\ddagger Dipartimento di Matematica, Università degli Studi di Bologna, I-40127 Bologna, Italy
\ddagger Dipartimento di Matematica, Università degli Studi di Modena, I-41100 Modena, Italy

Received 3 April 1989, in final form 30 June 1989

Abstract

We prove the existence and we give the semiclassical magnetic asymptotics of the magnetic bands in superlattices. We use the Wannier single-band approximation which leads to a dual semiclassical Bloch model with a band function as potential. A picture of x-dependent bands suggests exponentially small magnetic gap widths as given by the beating effect of a Zener double well.

1. Introduction

Recently considerable interest has centred on the problem of a two-dimensional electron moving in a periodic potential $V(x, y)$ in the presence of a perpendicular magnetic field of strength B. The problem was studied particularly as a starting point for the quantum Hall effect (see for instance Aizim and Volkov 1984, 1985, Avron and Simon 1985). In particular the magnetic bands have been considered for a strong magnetic field (Aizim and Volkov 1984, 1985) and a one-dimensional superlattice potential $V(x)$. In this case the solution to the problem is simply given by considering the potential as a perturbation. More complciated and interesting also for its connections with the Stark-Wannier problem is, as we shall see in the following, the weak-field case. In the Landau gauge (with x in the place of y) we have the Hamiltonian

$$
\begin{equation*}
\mathscr{H}(\omega)=\left(\frac{h}{\mathrm{i}} \frac{\partial}{\partial y}+\omega x\right)^{2}+\left(\frac{h}{\mathrm{i}} \frac{\partial}{\partial x}\right)^{2}+V(x) \quad \text { in } L^{2}\left(\mathbb{R}^{2}\right) \tag{1.1}
\end{equation*}
$$

which, restricted to the vectors $\psi(x, y)=\psi(x) \exp \left(\mathrm{i} y k_{\mathrm{v}} / h\right)$, becomes the onedimensional Hamiltonian:

$$
\begin{equation*}
H_{\mathrm{x}, 1}=H_{\mathrm{B}}+\omega^{2}\left(x-x_{0}\right)^{2}=p^{2}+V(x)+\omega^{2}\left(x-x_{0}\right)^{2} \quad \text { in } L^{2}(\mathbb{R}) \tag{1.2}
\end{equation*}
$$

where

$$
p=-\mathrm{i} h \frac{\mathrm{~d}}{\mathrm{~d} x} \quad h=\frac{\hbar}{\sqrt{2 m}} \quad \omega=\sqrt{\frac{m}{2}} \omega_{\mathrm{c}} \quad \omega_{\mathrm{c}}=\frac{e B}{m c}
$$

ω_{c} being the cyclotronic frequency,

$$
x_{0}=-\lambda^{2} k_{y} \quad \lambda=\sqrt{\frac{\hbar c}{e B}}
$$

λ being the magnetic length. Here $V(x)$ is the superlattice's potential with period π and is even, i.e. $V(x)=V(-x)$. Moreover we suppose $V \in C^{2}, V(x) \geqslant 0, V(0)=V^{\prime}(0)=$ $0, V^{\prime \prime}(0)>0$.

Let us call $E_{n}(k)$ the band function of the original Bloch operator H_{B} and let $E_{n}^{\natural}=\min E_{n}(k), E_{n}^{\iota}=\max E_{n}(k)$ be the band endpoints. As a further hypothesis about the potential $V(x)$ we suppose in the following that all the gaps $\left(E_{n}^{\mathrm{f}}, E_{n+1}^{\mathrm{h}}\right), n \geqslant 1$, are not empty. On the other side, the bidimensional Bloch operator $\mathscr{H}(0)$ has band functions

$$
\begin{equation*}
\tilde{E}_{n}\left(k_{\mathrm{r}}, k_{\mathrm{r}}\right)=E_{n}\left(k_{\mathrm{x}}\right)+h^{2} k_{y}^{2}=E_{n}\left(k_{\mathrm{x}}\right)+\omega^{2} x_{0}^{2} . \tag{1.3}
\end{equation*}
$$

The magnetic band functions are defined as $\tilde{\varepsilon}_{n}\left(k_{y}\right)=\varepsilon_{n}\left(x_{0}\right), x_{0}=-\lambda^{2} k_{y}$, where $\varepsilon_{n}\left(x_{0}\right)$ are the eigenvalues of $H_{6,}$. In the following we shall consider only the functions $\varepsilon_{n}\left(x_{0}\right)=\varepsilon_{n}\left(-x_{0}\right)=\varepsilon_{n}\left(x_{0}+\pi\right)$, also called magnetic band functions.

Hence the spectrum of the operator defined by the Hamiltonian $\mathscr{H}(\omega)$ is continuous and is the union of the magnetic bands $B_{n}, n \geqslant 1, B_{n}=\left\{\varepsilon_{n}\left(x_{0}\right) \mid x_{0} \in \mathscr{B}{ }^{\prime}\right\}=\left[\varepsilon_{n}^{h}, \varepsilon_{n}^{\dagger}\right]$; here $\mathscr{B}^{\prime}=(-\pi / 2,+\pi / 2]$ is the dual Brillouin zone.

Actually, for ω small (definitely not for ω large) such magnetic band functions $\varepsilon_{n}\left(x_{0}\right)$ have most of the general properties of the Bloch band functions.

In our case, fixing $k_{1}=-x_{0} / \lambda^{2}$ and making the single-band approximation, from $\mathscr{H}(\omega)$ we get

$$
\begin{equation*}
P_{1} H_{x_{1}} P_{1}=H_{\mathrm{SB}}\left(x_{0}\right) \tag{1.4}
\end{equation*}
$$

If we consider, by unitary equivalence, $H_{\mathrm{SB}}\left(x_{0}\right)$ in the crystal momentum representation we have the operator

$$
\begin{equation*}
\tilde{H}_{\mathrm{SB}}\left(x_{0}\right)=P_{1} \tilde{E}_{1}\left(\boldsymbol{k}+h^{-1} \boldsymbol{A}\right) P_{1} \tag{1.5}
\end{equation*}
$$

where $\boldsymbol{A}=(0, \omega \boldsymbol{x})$ in the Landau gauge and $\boldsymbol{k}=\left(k_{\mathrm{x}},-x_{0} / \lambda^{2}\right)$, in agreement with the Peierls substitution rule (see for instance Claro and Wannier 1979). By a further simple approximation we obtain the dual Bloch operator

$$
\begin{equation*}
\tilde{H}_{\mathrm{D}}\left(x_{0}\right)=-\omega^{2} \frac{d^{2}}{d k^{2}}+E_{1}(k) \quad E_{1}(k)=E_{1}(k+2) \tag{1.6}
\end{equation*}
$$

with $x_{0} \in \mathscr{B}^{\prime}$ as crystal momentum.
In the energy region $E_{1}^{\mathrm{b}} \leqslant \varepsilon<E_{1}^{t}(\$ 3)$ the semiclassical quantisation rule of BohrSommerfield applied to (1.6) gives the Onsager-type relation (see for instance Pippard 1969 and Guillot et al 1988):

$$
\begin{equation*}
A_{C}\left(\varepsilon_{n}\left(x_{0}\right)\right)=2\left(n-\frac{1}{2}\right) \pi \omega+\mathrm{O}\left(\omega^{2}\right) \quad \text { as } \omega \downarrow 0 \tag{1.7}
\end{equation*}
$$

where $A_{C}(\varepsilon)=\oint \sqrt{\varepsilon-E_{1}(k)} \mathrm{d} k$ is the action area or, equivalently,

$$
\begin{equation*}
\varepsilon_{n}\left(x_{0}\right)=A_{C}^{-1}\left[2\left(n-\frac{1}{2}\right) \pi \omega\right]+O\left(\omega^{2}\right) \quad \omega \downarrow 0, n=1,2, \ldots \tag{1.8}
\end{equation*}
$$

In this way, fixing n and letting $\omega \downarrow 0$, we have the rigorous behaviour:
$\varepsilon_{n}\left(x_{0}\right)=E_{1}^{\mathrm{h}}+\omega\left(n-\frac{1}{2}\right) \sqrt{2 E_{1}(0)}+O\left(\omega^{2}\right) \quad n=1,2, \ldots, x_{0} \in \mathscr{B}^{\prime}$.
Even more interesting is the energy region $\left[E_{1}^{\prime}+\delta, E_{2}^{\mathrm{h}}-\delta\right], \delta>0,(\S 2)$ where we have the similar quantisation rule, for $0 \leqslant x_{0} \leqslant \pi / 2$, applied to (1.6):

$$
\begin{equation*}
A_{\checkmark} \cdot\left(\varepsilon_{2 n+1 / 2 \pm 1 / 2}\left(x_{0}\right)\right)=2 \omega\left(n \pi \pm x_{0}\right)+\mathrm{O}\left(\omega^{2}\right) \quad \text { as } \omega \downarrow 0 \tag{1.10}
\end{equation*}
$$

where now $A_{C}(\varepsilon)=\int_{-1}^{+1} \sqrt{\varepsilon-E_{1}(k)} \mathrm{d} k$. Equation (1.10) gives the existence and the semiclassical estimate for the magnetic band function. In particular, for $x_{0} \in[0, \pi / 2]$ fixed, we have the $\omega \downarrow 0$ behaviour:

$$
\begin{align*}
\varepsilon_{2 n+1 / 2=1 / 2}\left(x_{0}\right) & =\varepsilon\left(2 n \pi \omega \pm x_{0} \omega\right)+\mathrm{O}\left(\omega^{2}\right) \\
& =\varepsilon(2 n \pi \omega) \pm x_{0} \omega \varepsilon^{\prime}(2 n \pi \omega)+\mathrm{O}\left(\omega^{2}\right) \quad \omega \downarrow 0 \tag{1.11}
\end{align*}
$$

where $\varepsilon(\cdot)=A_{C}^{-1}(\cdot)$ and $\varepsilon(2 n \pi \omega) \in\left[E_{1}^{\dagger}+\delta, E_{2}^{\natural}-\delta\right]$.

The small $x_{0}\left(x_{0} \approx \pi / 2\right)$ monotone behaviour is given by a degenerate perturbation formula:

$$
\begin{align*}
\varepsilon_{2 n+1 / 2 \pm 1 / 2}\left(x_{0}\right) & =\frac{\varepsilon_{2 n+1}(0)+\varepsilon_{2 n}(0)}{2}+x_{11}^{2} \omega^{2} \\
& \pm\left(\frac{\left(\varepsilon_{2 n+1}(0)-\varepsilon_{2 n}(0)\right)^{2}}{4}+4 \omega^{2} x_{0}^{2}|\omega \hat{x}|^{2}\right)^{1 / 2}+\mathrm{O}\left(\omega x_{0}^{2}\right) \tag{1.12}
\end{align*}
$$

where $|\omega \hat{x}|=\left|\left\langle\phi_{2 n+1}(0), \omega x \phi_{2 n}(0)\right\rangle\right|=\varepsilon^{\prime}(2 \pi \omega)+\mathrm{O}(\omega)$.
Collecting the rigorous results for ω small enough, we have as many simple magnetic bands as we want in the energy region ($E_{1}^{\mathrm{b}}, E_{2}^{\mathrm{b}}$) defined by the band functions $\varepsilon_{n}\left(x_{0}\right)=\varepsilon_{n}\left(x_{0}+\pi\right)=\varepsilon_{n}\left(-x_{0}\right)$. The extreme band values $\varepsilon_{n}(0)\left(\varepsilon_{n}(\pi / 2)\right)$ are given by H_{0} on $L^{2}\left(\mathbb{R}^{+}\right)\left(H_{\pi / 2}\right.$ on $\left.L^{2}(\pi / 2, x)\right)$ with Dirichlet-Neumann boundary conditions at $x=0(\pi / 2)$; and, since $\varepsilon_{n}^{\prime}(0)=\varepsilon_{n}^{\prime}(\pi / 2)=0$, we have the divergence of the density of states at these energy values. The best method for understanding some of the abovementioned results and to obtain other heuristic estimates is the picture of x-dependent bands. Let $E_{n}^{\mathrm{b} / t}(x)=E_{n}^{\mathrm{b} / 4}+\omega^{2}\left(x-x_{0}\right)^{2},\left|x_{0}\right| \leqslant \pi / 2$ (see figure 1). For $E_{2}^{\mathrm{b}}>E>E_{1}^{\prime}$ we have a double well model with wavefunctions concentrated in the region $\left[x_{+}^{1}, x_{+}^{2} \mid \cup\right.$ $\left[x_{-}^{2}, x_{-}^{1}\right]$, where

$$
x_{ \pm}^{1}=x_{0} \pm \sqrt{E-E_{1}^{\mathrm{b}} / \omega} \quad \text { and } \quad x_{ \pm}^{2}=x_{0} \pm \sqrt{E-E_{1}^{1} / \omega} .
$$

Let us note that the sign of $\varepsilon_{n}^{\prime}\left(x_{0}\right)$ gives the concentration of the state in the two possible regions (wells) defined in figure 1 for x positive or negative; in fact we have:

$$
\begin{equation*}
\varepsilon_{n}^{\prime}\left(x_{0}\right)=-2 \omega^{2}\left\langle\phi_{n}\left(x_{0}\right),\left(x-x_{0}\right) \phi_{n}\left(x_{0}\right)\right\rangle \tag{1.13}
\end{equation*}
$$

and the sign of $\varepsilon_{n}^{\prime}\left(x_{0}\right)$ determines the direction of the 'propagation' of the states in the y direction along a series of 'reflected arcs' (see for instance Pippard 1969, p 121, figure 3.2). For $x_{0}=0, \pi / 2$ we have no propagation at all because both the opposite motions are allowed (with tunnelling between). In this case $H\left(x_{0}\right)$ is a symmetric double well Hamiltonian and we have a splitting of the levels of the order of the square

Figure 1. Picture of x-dependent bands for $x_{01}=0$ and energy $E_{0} \in\left(E_{1}, E_{2}^{h}\right)$. The regions $|x|\left\langle x_{+}^{2}, x_{+}^{2}=-x_{-}^{2}=\sqrt{E_{1},-E_{1}^{h}} / \omega\right.$, and $| x \mid>x_{+}^{1}, x_{+}^{1}=-x^{1}=\sqrt{E_{10}-E_{2}^{h} / \omega \text {, are classically forbid- }-2,}$ den; so that we have a double-well model.
of the Zener transmission amplitude through half a barrier. Such splitting is by definition the gap width and it turns out to be exponentially small:

$$
\begin{equation*}
\Delta E=|G(E)|=O(\exp \{-C(E) / \omega\}) \quad \omega \downarrow 0 \tag{1.14}
\end{equation*}
$$

where

$$
C(E)=\int_{E_{i}}^{E} \frac{\chi(E) \mathrm{d} E}{\sqrt{E-E_{1}^{!}}} \quad \chi(E)=|\Im k(E)|
$$

$k(E)$ is the crystal momentum in the first gap for the original Bloch operator H_{B}.
We consider the limit of small h (true semiclassical limit) only for the purpose of completeness. All the main results are valid for $h=1$ as well.

We also consider (in §3) a partially solvable model given by the operators:

$$
\begin{equation*}
H_{x_{11}}^{\prime}=H_{\mathrm{B}}+\omega^{2}\left(x-x_{0}\right)^{2}+\omega\left(x-x_{0}\right) \cos 2 x \quad x_{0} \in \mathscr{B} \prime \tag{1.15}
\end{equation*}
$$

where

$$
H_{\mathrm{B}}=-h^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+\frac{\cos ^{2} 2 x}{4}+h(1+\sin 2 x) .
$$

The first eigenvalue of $H_{x_{0},}^{\prime}$, is exactly given by

$$
\varepsilon_{1}\left(x_{0}\right)=E_{1}^{\mathrm{b}}+\omega h=h+\omega h .
$$

As announced above, we do not consider the case of large ω since, as noted by Aizim and Volkov (1984, 1985), the magnetic bands are given by a perturbation of the degenerate Landau eigenvalues $\varepsilon_{n}\left(x_{0}\right)=(2 n-1) h \omega, n \geqslant 1$. In this case the perturbation is the bounded operator $V(x)$ and the unperturbed one is $p^{2}+\omega^{2}\left(x-x_{0}\right)^{2}$, so that the perturbation theory of Kato applies for $\omega>\max |V(x)| / h$.

We have not exploited here the promising connections of the single-band approximation of the magnetic field case with the electric field case of Stark-Wannier.

After the completion of this work we received a very interesting paper by Helffer and $\mathrm{Sjöstrand}$ where magnetic fields in crystals are rigorously treated (Helffer and Sjöstrand 1989).

2. Magnetic bands in the first gap of the zero-field one-dimensional Bloch model

Let $\mathscr{H}(\omega)$ be the self-adjoint operator (Cycon et al 1987) obtained by the closure of the formal operator (1.1) defined on $C_{0}^{\mathbf{x}}\left(\mathbb{R}^{2}\right)$. By a Fourier transform in the y variable it becomes the direct integral $\mathscr{H}(\omega)=\int_{\beta}^{\Theta}, H_{v_{i n}} \mathrm{~d} x_{0}$ of the one-dimensional positive operator
$H_{x_{0}}=p^{2}+V(x)+\omega^{2}\left(x-x_{0}\right)^{2} \quad x_{0} \in \mathscr{B}^{\prime}=\left(-\frac{\pi}{2},+\frac{\pi}{2}\right] \quad \omega>0$
with domain $\mathbf{D}\left(H_{x_{1}}\right)=\mathbf{D}\left(p^{2}\right) \cap \mathbf{D}\left(x^{2}\right)$; here $p=-\mathrm{i} h \mathrm{~d} / \mathrm{d} x$ and $h>0$ (for a definition of direct integral decomposition see Reed and Simon (1978) ch XIII §16).

Since the potential goes to \propto as $x \rightarrow \pm \infty$, the eigenvalues of $H_{x_{0}}$ are simple (ch III $\S 3$ of Voros 1982, ch $24 \S 1-\S 5$ of Naimark 1968). Moreover, $H_{x,}$, is an analytic operator family in $x_{0} \in \mathbb{C}, \omega$ in the sector $\mathfrak{H} \omega^{2}>0$, so that the nth magnetic band function $\varepsilon_{n}\left(x_{0}\right)$ is analytic in a strip around the real axis.

In this section we prove (theorem 2.6 and remark 2.7) the existence of the magnetic band functions $\varepsilon_{n}\left(x_{0}\right)$ in the interval $\left[E_{1}^{\imath}+\delta, E_{2}^{\mathrm{b}}-\delta\right], \delta>0$, which are approximated, modulo $\mathrm{O}\left(\omega^{\left(1+\alpha^{\prime}\right)}\right), 0<\alpha<1, \omega \downarrow 0$, for $x_{0} \in \mathcal{B}^{\prime}$, by the band functions $\varepsilon_{n}^{1!}\left(x_{0}\right)$ of the Bloch operator obtained by the single-band approximation.

We now briefly recall the crystal momentum representation (CMR, see Bentosela et al 1988) which will be used in the following.

Let us consider the unitary transformation

$$
\begin{aligned}
& U: L^{2}(\mathbb{R}) \rightarrow \int_{\mathscr{A}}^{\infty} \not \mathscr{H}^{\prime}(k) \mathrm{d} k \quad \mathscr{H}^{\prime}(k)=l^{2} \\
& \psi \rightarrow(U \psi)(k, K)=\varphi(k, K)=\hat{\psi}(k+K) \quad k \in \mathscr{B} \quad K \in \mathbb{Z}
\end{aligned}
$$

where $\hat{\psi}$ denotes the Fourier transform of ψ. The sequence $\{\varphi(k, K)\}_{\kappa, Z}$ belongs to $\mathscr{H}^{\prime}(k)=l^{2}$, for almost all $k \in \mathscr{B}$, where \mathscr{B} is the Brillouin zone $(-1,+1]$.

Under this transformation the operator $H_{\mathrm{B}}=p^{2}+V(x)$ becomes

$$
U H_{\mathrm{B}} U^{-1}=\int_{A}^{\infty} H(k) \mathrm{d} k
$$

where

$$
\begin{aligned}
(H(k) a)(K) & =(T(k) a)(K)+(\tilde{V} a)(K) \\
& =h^{2}(k+K)^{2} \cdot a(K)+\sum_{, \mathbb{Z}} V_{i} a(K-j)
\end{aligned}
$$

for any $a(K)$ of the form $a(K)=(U \psi)(k, K)$ for some $\psi \in D\left(H_{B}\right)$ and for k fixed. Here V denotes the j th Fourier coefficient of $V\left(V_{1} \in \mathbb{R}\right.$ because V is even, i.e. $V(x)=V(-x)) . H(k)$ has compact resolvent for any k and there exists a sequence of eigenvalues $0<E_{1}(k) \leqslant E_{2}(k) \leqslant \ldots \leqslant E_{n}(k) \leqslant \ldots$ with real-valued orthonormal eigenvectors $\left\{\omega_{1}^{(k)}(K)\right\}_{K: \mathbb{z}}, \ldots,\left\{\omega_{n}^{(h)}(K)\right\}_{K: \mathbb{z}}, \ldots$ analytic in k if $E_{n}(k)$ is simple, with the property $\omega_{n}^{-k}(-K)=\omega_{n}^{k}(K)$.

For k fixed $\left\{E_{n}(k)\right\}_{n-1}^{x}$ is the discrete spectrum of the operator formally defined by H_{B} with the boundary conditions $\psi(\pi)=\mathrm{e}^{\mathrm{i} k \pi} \psi(0)$ and $\psi^{\prime}(\pi)=\mathrm{e}^{i k \pi} \psi^{\prime}(0)$.

Such eigenvalues, as functions of k, are called band functions and are analytic, even and periodic with period 2; moreover they are strictly monotone in [0, 1]. In particular, in the open interval $(0,1)$, the derivatives of $E_{n}(k)$ are positive for n odd and negative for n even. Let

$$
E_{n}^{1}=\max _{k} E_{n}(k) \quad E_{n}^{n}=\min _{k} E_{n}(k)
$$

then $\sigma\left(H_{B}\right)=\bigcup_{n-1}^{\text {x }}\left[E_{n}^{b}, E_{n}^{\prime}\right]$ is purely absolutely continuous. The closed interval [$E_{n}^{\mathrm{h}}, E_{n}^{\prime}$] is the nth band and the open intervals $\left(-\infty, E_{1}^{\mathrm{h}}\right)$ and ($\left.E_{n}^{\mathrm{t}}, E_{n+1}^{\mathrm{b}}\right)$ are the 0 th and nth gaps. Now let us consider the unitary transformation

$$
\tilde{U}: L^{2}(\mathbb{R}) \rightarrow \oplus_{n=1}^{x} L^{2}(A)
$$

defined by

$$
\begin{aligned}
\psi \rightarrow(\tilde{U} \psi)_{n}(k) & =\left\langle\omega_{n}^{(h)}(\cdot),(U \psi)(k, \cdot)\right\rangle_{i} \\
& =\sum_{,=\mathbb{Z}} \overline{\omega_{n}^{(h)}(j)} \cdot(U \psi)(k, j) \equiv \sum_{k \in \mathbb{Z}} \omega_{n}^{(h)}(j) \cdot(U \psi)(k, j) .
\end{aligned}
$$

Let us define the unitary transformation \tilde{H}_{0} of $H_{0}\left(H_{0}=H_{1,}\right.$ for $x_{0}=0$ fixed $)$ given by

$$
\tilde{H}_{0}=\tilde{U} H_{0} \tilde{U}^{-1}=\tilde{H}_{\mathrm{B}}+\omega^{2} \tilde{U} x^{2} \tilde{U}^{-1}
$$

where \tilde{H}_{0} is self-adjoint with compact resolvent on the domain $\mathbf{D}\left(\tilde{H}_{0}\right)=$ $\tilde{U}\left(\mathbf{D}\left(x^{2}\right) \cap \mathbf{D}\left(p^{2}\right)\right)$. Formally, we have:

$$
\tilde{H}_{0}=\tilde{H}_{\mathrm{B}}+\omega^{2}(\mathrm{i} D+X)^{2}
$$

acting on the vectors $a=\left(a_{n}\right)_{n} \in \oplus_{n-1}^{x} L^{2}(\mathscr{B})$ such that $a_{n} \in C^{2}(\mathscr{B}) \forall n$, and only a finite number of the a_{n} are not identically zero, where:

$$
\begin{aligned}
& \left(\tilde{H}_{\mathrm{B}} a\right)_{n}(k)=E_{n}(k) \cdot a_{n}(k) \\
& (X a)_{n}(k)=\sum_{m=1}^{x} X_{n, m}(k) \cdot a_{m}(k) \\
& (D a)_{n}(k)=\frac{\mathrm{d} a_{n}(k)}{\mathrm{d} k} \\
& X_{n, m}(k)=\mathrm{i}\left\langle\omega_{n}^{(k)}(\cdot), \frac{\mathrm{d} \omega_{m}^{(k)}(\cdot)}{\mathrm{d} k}\right\rangle_{r}=-X_{m, n}(k)=-X_{n, m}(-k) .
\end{aligned}
$$

Then the unitary transformation \tilde{H}_{k}, of $H_{\mathrm{r}_{\mathrm{v}}}$ is defined by:

$$
\tilde{H}_{x_{1}, 1}=\tilde{H}_{B}+\omega^{2}\left(\mathrm{i} D+X-x_{0}\right)^{2}
$$

Let us split the interband operator X into two terms:

$$
X=X^{\prime}+\tilde{W}_{1}
$$

where $\tilde{W}_{1}=\tilde{U} W_{1} \tilde{U}^{-1}$ and

$$
W_{1}=P_{1}^{\prime} x P_{1}+P_{1} x P_{1}^{\prime}=P_{1}^{\prime} x P_{1}+\left(P_{1}^{\prime} x P_{1}\right)^{*}=P_{1}^{\prime}\left[x, P_{1}\right]_{-}+\left(P_{1}^{\prime}\left[x, P_{1}\right]_{-}\right)^{*} .
$$

Here P_{1} denotes the orthogonal projection on the first band:

$$
P_{1}=-\frac{1}{2 \pi \mathrm{i}} \oint_{1_{1}}\left(p^{2}+V-z\right)^{-1} \mathrm{~d} z
$$

where Γ_{1} is the positively oriented contour around the spectrum of the first band:

$$
\Gamma_{1}=\left\{z \in \mathbb{C} \left\lvert\, \operatorname{dist}\left(z,\left[E_{1}^{\mathrm{h}}, E_{1}^{\mathrm{\imath}}\right]\right)=d=\frac{E_{2}^{\mathrm{b}}-E_{1}^{\mathrm{t}}}{2}>0\right.\right\}
$$

and $P_{1}^{\prime}=1-P_{1}$.
Lemma 2.1. W_{1} is bounded and its norm L_{1} satisfies the following estimate:

$$
\begin{equation*}
L_{1}=\left\|W_{1}\right\| \leqslant C_{1} h^{1 / 2} \quad \text { if } h<h_{0} \tag{2.2}
\end{equation*}
$$

where $C_{1}>0$ and $h_{0}>0$ are suitable constants.

Proof. Relation (2.2) follows immediately, in fact (Avron 1979 and Bentosela et al 1988):

$$
\left[x, P_{1}\right]_{-}=\frac{h}{\pi} \oint_{1_{1}}\left(p^{2}+V-z\right)^{-1} p\left(p^{2}+V-z\right)^{-1} \mathrm{~d} z
$$

Since V is positive we have that

$$
p^{2} \leqslant p^{2}+V \leqslant \nu^{2}\left(p^{2}+V\right)^{2}+\frac{1}{\nu^{2}} \quad \forall \nu>0
$$

so p is relatively bounded by $p^{2}+V$ with relative bound $\nu>0$ arbitrary. Then:

$$
\left\|\left[x, P_{1}\right]-\right\| \leqslant h \frac{\text { length }\left(\Gamma_{1}\right)}{\mathrm{d} \pi}\left(\nu\left(1+E_{2}^{\mathrm{h}} d^{-1}\right)+\frac{1}{\nu d}\right)
$$

where $\quad d=(h / 2) \sqrt{2 V^{\prime \prime}(0)}+O\left(h^{2}\right), \quad$ length $\left(\Gamma_{1}\right)=\pi h \sqrt{2 V^{\prime \prime}(0)}+O\left(h^{2}\right) \quad$ and $\quad E_{2}^{h}=$ $(3 h / 2) \sqrt{2 V^{\prime \prime}(0)}+\mathrm{O}\left(h^{2}\right)$ if $h<h_{0}$ for suitable $h_{0}>0$ (see Harrell 1979 and Weinstein and Keller 1985).

If we choose $\nu=h^{-1 / 2}$ we have (2.2) with $C_{1}=8\left[2+1 / \sqrt{2 V^{\prime \prime}(0)}\right]$.
Let us define the symmetric operator formally given by

$$
\begin{equation*}
S_{\mathrm{x}_{1}}=\frac{1}{\omega}\left(P_{1} \tilde{H}_{\mathrm{x}_{1}} P_{1}^{\prime}+P_{1}^{\prime} \tilde{H}_{\mathrm{v}_{1}} P_{1}\right)=\omega\left[\mathrm{i} D+X^{\prime}-x_{0}, \tilde{W}_{1}\right]_{+} \tag{2.3}
\end{equation*}
$$

acting on the vectors $a=\left(a_{n}\right)_{n} \in \oplus_{n=1}^{x} L^{2}(\mathscr{B})$ such that $a_{n} \in C^{2}(\mathscr{B}) \forall n$, and only a finite number of a_{n} is not identically zero. Obviously $S_{x_{\mathrm{x}}}$ is the term coupling the first band with the others in the operator $\tilde{H}_{x_{1}}$. We have the following result.
Theorem 2.2. (i) $S_{x_{1},}$ is infinitesimally form-bounded with respect to $\tilde{H}_{\alpha_{i},}$, i.e. $\mathbf{Q}\left(\tilde{H}_{k_{1}}\right) \subset \mathbf{Q}\left(S_{x_{1}}\right)$ and
$\left|\left\langle u, S_{x_{1}} u\right\rangle\right| \leqslant\left(\frac{\left(L_{1}\right)^{2}}{\mu}-\mu E_{1}^{b}\right)\langle u, u\rangle+\mu\left\langle u, \tilde{H}_{\mathrm{x}_{1}} u\right\rangle \quad \forall u \in \mathbf{Q}\left(\tilde{H}_{x_{1}}\right) \quad \forall \mu>0$
where $\langle\cdot, \cdot\rangle$ is the inner product in $\oplus_{n=1}^{x} L^{2}(\mathscr{B})$.
(ii) The sum in the form sense

$$
T_{\mathrm{x}_{1},}(\eta)=\tilde{H}_{\mathrm{k},} \dot{+}(\eta-\omega) S_{\mathrm{x}_{\mathrm{k}}}
$$

is an analytic family of type (B) in the complex η plane.
(iii) $T_{x_{1}}(\eta)$ has compact resolvent for any η in the complex plane.
(iv) $T_{x_{0}}(0)=P_{1} \tilde{H}_{x,} P_{1}+P_{1}^{\prime} \tilde{H}_{x_{1}} P_{1}^{\prime}$.

Proof. (i) Let $\mathbf{Q}\left(\tilde{H}_{x_{1}}\right)$ be the domain of the form defined by $\tilde{H}_{x_{1}}$. Since $\tilde{H}_{\mathrm{B}} \geqslant 0$ then

$$
\mathbf{Q}\left(\tilde{H}_{x_{1}}\right) \subset \mathbf{Q}\left(\left[\mathrm{i} D+X^{\prime}-x_{0}+\tilde{W}_{1}\right]^{2}\right)
$$

Let $\mathbf{Q}\left(S_{\mathrm{x}_{0}}\right)$ be the domain of the form defined by $S_{\mathrm{v}_{6}}$. Since $S_{\mathrm{x}_{1}} \leqslant \omega\left[\mathrm{i} D+X^{\prime}-x_{0}+\tilde{W}_{1}\right]^{2}$, it follows that

$$
\mathbf{Q}\left(\tilde{H}_{u_{0}}\right) \subset \mathbf{Q}\left(\left[i D+X^{\prime}-x_{0}+\tilde{W}_{1}\right]^{2}\right) \subset \mathbf{Q}\left(S_{v_{10}}\right)
$$

Moreover, (2.4) follows from the positiveness of the operators ($\left.\tilde{W}_{1}\right)^{2}$ and $\tilde{H}_{\mathrm{B}}-E_{1}^{\mathrm{h}}$, and the following estimates:

$$
\begin{aligned}
\left|\left\langle u, S_{r_{0}} u\right\rangle\right| & =2\left|\left\langle\omega\left(\mathrm{i} D+X^{\prime}-x_{0}\right) u, \tilde{W}_{1} u\right\rangle\right| \\
& \leqslant 2\left(\left\langle u, \omega^{2}\left(\mathrm{i} D+X^{\prime}-x_{0}\right)^{2} u\right\rangle\right)^{1 / 2}\left(\left\langle u,\left(\tilde{W}_{1}\right)^{2} u\right\rangle\right)^{1 / 2} \\
& \leqslant \frac{1}{\mu}\left\langle u,\left(\tilde{W}_{1}\right)^{2} u\right\rangle+\mu \omega^{2}\left(u,\left(\mathrm{i} D+X^{\prime}-x_{0}\right)^{2} u\right\rangle \\
& \leqslant\left(\frac{\left(L_{1}\right)^{2}}{\mu}-\mu E_{1}^{\llcorner }\right)\langle u, u\rangle+\mu\left\langle u,\left(\tilde{H}_{\mathrm{w}_{1}}-\omega S_{\mathfrak{k}_{1}}\right) u\right\rangle
\end{aligned}
$$

(ii) This follows from theorem 4.8 in ch VII of Kato (1984).
(iii) This follows from (ii) and theorem 4.3 in ch VII of Kato (1984) since $T_{x_{1},}(\omega)=$ $\tilde{H}_{x_{\mathrm{a}}}$ has compact resolvent too.
(iv) This follows immediately from the definition of $S_{x_{1}}$ in (2.3).

Let us call $\varepsilon_{\eta}\left(x_{0}, \eta\right)$ the eigenvalues of $T_{r_{1}}(\eta)$. Since $T_{\kappa_{1}}(\omega)=\tilde{H}_{\mathrm{x}_{1},}$ the eigenvalues $\varepsilon_{n}\left(x_{0}, \omega\right)$ coincide with the magnetic band functions $\varepsilon_{n}\left(x_{0}\right)$.

Now, we calculate the eigenvalues $\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)$ of the unperturbed operator $T_{x_{1}}(0)$ in the interval $\left[E_{1}^{t}+\delta, E_{2}^{\mathrm{b}}\right), 0<\delta<E_{2}^{\mathrm{h}}-E_{1}^{\mathrm{t}}$. In particular we prove that they are the eigenvalues of the operator given by the single-band approximation.

Theorem 2.3. For any $x_{0} \in \mathscr{B}^{\prime}, \delta=K \omega^{\beta}, 0<\beta<1$ and $K>0$, the spectrum of $T_{\mathfrak{y}_{1}}(0)$ contained in the interval $\left[E_{1}^{t}+\delta, E_{2}^{h}\right.$) is not empty and consists of the eigenvalues $\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)$, where $\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)$ is the nth band function of a Bloch model.

Let $A=2 n \pi \omega$ so that

$$
\begin{equation*}
A_{C}\left(E_{2}^{\mathrm{h}}\right)>A>A_{C}\left(E_{1}^{\mathrm{l}}+\delta\right) \geqslant A_{C}\left(E_{1}^{\imath}\right)+C \omega^{\beta} \quad \omega<\omega_{0} \tag{2.5}
\end{equation*}
$$

where $C>0$ is proportional to $K, \omega_{0}>0$ and $A_{C}(\mathscr{E})$ is the classical action defined below. Then the eigenvalues $\varepsilon_{2 n+1 / 2 \pm 1 / 2}^{\mathrm{SB}}\left(x_{0}\right)$ must satisfy the following:

$$
\begin{equation*}
A \pm 2 x_{0} \omega=A_{C}\left(\varepsilon_{2 n+1 / 2 \pm 1 / 2}^{\mathrm{SB}}\left(x_{0}\right)\right)+\mathrm{O}\left(\omega^{2}\right) \quad \omega \downarrow 0, x_{0} \in \mathscr{B}^{\prime} \tag{2.6}
\end{equation*}
$$

and in particular:

$$
\begin{equation*}
\varepsilon_{2 n+1 / 2 \pm 1 / 2}^{\mathrm{SB}}\left(x_{0}\right)=\varepsilon(A) \pm \frac{4 \omega x_{0}+\mathrm{O}\left(\omega^{2}\right)}{\int_{B}\left[\varepsilon(A)-E_{1}(k)\right]^{-1 / 2} \mathrm{~d} k} \quad \omega \downarrow 0, x_{0} \in \mathscr{B}^{\prime} \tag{2.7}
\end{equation*}
$$

where $\varepsilon(\cdot)$ is defined by the inverse function $\varepsilon^{-1}(E)=A_{C}(E)$.
Proof. Let us define the single-band operator: $\tilde{\mathrm{H}}_{\mathrm{SB}}\left(x_{0}\right) \equiv P_{1} \tilde{H}_{\mathrm{x}_{1}} P_{1}$. Since $T_{\mathrm{x}_{1}}(0)=$ $P_{1} \tilde{H}_{\mathrm{k},} P_{1}+P_{1}^{\prime} \tilde{H}_{\mathrm{x}, \mathrm{l}} P^{\prime}$ we have

$$
\sigma\left(T_{\mathrm{k},}(0)\right)=\sigma\left(\tilde{H}_{\mathrm{SB}}\left(x_{0}\right)\right) \cup \sigma\left(P_{\mathrm{i}}^{\prime} \tilde{H}_{\mathrm{v}}, P_{1}^{\prime}\right)
$$

Since $\Theta\left(P_{1}^{\prime} \tilde{H}_{v_{1}} P_{1}^{\prime}\right) \subset\left[E_{2}^{\mathrm{h}}, \infty\right)$ we have $\sigma\left(T_{x_{1}}(0)\right) \cap\left(-\infty, E_{2}^{\mathrm{b}}\right)=\sigma\left(\tilde{H}_{\mathrm{SB}}\left(x_{0}\right)\right) \cap\left(-\infty, E_{2}^{\mathrm{b}}\right)$. Hence to calculate the spectrum of $T_{\mathrm{v},}(0)$ in the interval $\left(-\infty, E_{2}^{\mathrm{h}}\right)$ it is sufficient to consider the single-band approximation:

$$
\begin{align*}
\tilde{H}_{\mathrm{S} B}\left(x_{0}\right) \equiv & P_{1} \tilde{H}_{\mathrm{v}, 1} P_{1}=P_{1} T_{x_{,}}(0) P_{1} \\
= & \omega^{2}\left(-D^{2}+\left(\tilde{W}_{1}^{2}\right)_{1,1}(k)+\left(X_{1,1}(k)-x_{0}\right)^{2}+\mathrm{i}\left[D, X_{1,1}(k)-x_{0}\right]_{+}\right)+E_{1}(k) \\
= & \exp \left(\mathrm{i} \int_{-1}^{k}\left(X_{1,1}(\nu)-x_{0}\right) \mathrm{d} \nu\right)\left(-\omega^{2} D^{2}+E_{1}(k)\right. \\
& \left.+\omega^{2}\left(\tilde{W}_{1}^{2}\right)_{1,1}(k)\right) \exp \left(-\mathrm{i} \int_{k}\left(X_{1,1}(\nu)-x_{0}\right) \mathrm{d} \nu\right) \\
= & \exp \left[-\mathrm{i} x_{0}(k+1)\right]\left(-\omega^{2} D^{2}+E_{1}(k)+\omega^{2}\left(\tilde{W}_{1}^{2}\right)_{1,1}(k)\right) \exp \left[\mathrm{i} x_{0}(k+1)\right] \tag{2.8}
\end{align*}
$$

with periodic boundary conditions, where $X_{1,1} \equiv 0$ and $\left(\tilde{W}_{i}^{2}\right)_{1,1}(k)$ is the multiplication operator $\Sigma_{l \neq 1} X_{1, j}(k) \cdot X_{, 1}(k)$.

Equation (2.8) is equivalent to the operator defined by

$$
\begin{equation*}
-\omega^{2} D^{2}+E_{1}(k)+\omega^{2}\left(\tilde{W}_{1}^{2}\right)_{1,1}(k) \quad k \in[-1,+1]=\overline{\mathscr{B}} \tag{2.9}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
\psi(1)=\mathrm{e}^{\mathrm{i} 2 x_{1}} \psi(-1) \quad \psi^{\prime}(1)=\mathrm{e}^{\mathrm{i} 2 _{1}} \psi^{\prime}(-1) \tag{2.10}
\end{equation*}
$$

Therefore for fixed ω and $x_{0} \in \mathscr{B} \mathscr{B}^{\prime}$ we have another band function sequence $\left\{\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)\right\}_{n}$; $\mathscr{B}^{\prime}=(-\pi / 2,+\pi / 2]$ is the dual Brillouin zone. Hence for the implicit determination of such bands we shall use the analyticity and monotonicity properties of the band functions. Since $\left(\tilde{W}_{1}^{2}\right)_{1,1}(k)$ is bounded, we treat each operator (2.9), (2.10) as a regular perturbation of the following operator:

$$
\begin{equation*}
\tilde{H}_{\mathrm{D}}\left(x_{0}\right)=-\omega^{2} D^{2}+E_{1}(k) \tag{2.11}
\end{equation*}
$$

with boundary conditions (2.10). Hence we have again a band function sequence $\varepsilon_{n}^{\mathrm{D}}\left(x_{0}\right), x_{0} \in \mathscr{B}^{\prime}$, of $H_{\mathrm{D}}\left(x_{0}\right)$, with monotonicity in $x_{0}, 0 \leqslant x_{0} \leqslant \pi / 2$.

It is well known (ch IV $\$ 3$ of Erdelyi (1956) and ch IV $\$ \S 1,2$ of Voros (1982)) that the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \psi(k)}{\mathrm{d} k^{2}}+\frac{\mathscr{E}-E_{1}(k)}{\omega^{2}} \psi(k)=0 \quad \text { for } \mathscr{C}>E_{1}(k) \quad \forall k \in \overline{\mathcal{B}} \tag{2.12}
\end{equation*}
$$

has two linearly independent solutions $\psi_{--}, \psi_{+}=\overline{\psi_{-}}$asymptotic to all orders to the formal solutions:

$$
\begin{equation*}
\Psi_{ \pm}(k)=u^{-1 / 2} \exp \left(\pm \frac{\mathrm{i}}{\omega} \int_{-1}^{h} u(\tau) \mathrm{d} \tau\right) \tag{2.13}
\end{equation*}
$$

Here $u(k)$ is a formal real function $u(k)=\sum_{i=1}^{x} u_{2}(k) \omega^{21}$, uniformly over $\overline{\mathcal{B}}$, where u_{0} is given by $u_{0}(k)=\sqrt{\mathscr{E}-E_{1}(k)}$. Moreover the coefficients $u_{2,}(k)$ are periodic as $E_{1}(k)$ and

$$
u(-1)=u(1) \quad \text { and } \quad u^{\prime}(-1)=u^{\prime}(1)
$$

Let us set $A_{\mathrm{SC}}^{N}=\sum_{j=0}^{N} \int_{\dot{\beta}} u_{2 j}(k) \omega^{21} \mathrm{~d} k$, where

$$
A_{\mathrm{SC}}^{0}=\int_{-\beta} u_{0}(k) \mathrm{d} k=\int_{-1}^{1} \sqrt{\mathscr{E}-E_{1}(k)} \mathrm{d} k \equiv A_{C}(\mathscr{E})
$$

is the classical action function.
Now let $\psi=a \psi_{+}+b \psi_{-}$be a generic solution of (2.12) with $(a, b) \neq(0,0)$. By the torus conditions (2.10) on ψ we have that a and b must satisfy the following system of formal equations:

$$
\begin{aligned}
& a\left[\Psi_{+}(1)-\mathrm{e}^{\left.2 i x_{n} \Psi_{+}(-1)\right]+b\left[\Psi^{\prime}(1)-\mathrm{e}^{2 i \lambda_{n}} \Psi_{-}(-1)\right]=0}\right. \\
& a\left[\Psi_{+}^{\prime}(1)-\mathrm{e}^{2 i \aleph_{n}} \Psi_{+}^{\prime}(-1)\right]+b\left[\Psi_{-}^{\prime}(1)-\mathrm{e}^{2 i{ }_{1}} \Psi_{-}^{\prime}(-1)\right]=0
\end{aligned}
$$

Since $(a, b) \neq(0,0)$ the determinant of the system must be zero so that, by some calculations, we obtain the asymptotic formula:

$$
\begin{equation*}
\cos \left(2 x_{0}\right)-\cos \left(\frac{A_{\mathrm{SC}}^{\vee}}{\omega}\right)=\mathrm{O}\left(\omega^{\left(2 N+1^{\prime}\right.}\right) \quad \omega \downarrow 0, N \geqslant 1 \text { arbitrary } \tag{2.14}
\end{equation*}
$$

Thus we obtain
$A_{\mathrm{SC}}^{\mathrm{N}}=2 n \pi \omega \pm 2 x_{0} \omega+\mathrm{O}\left(\omega^{\mathrm{N}+2}\right) \quad \omega \downarrow 0$ uniformly for $x_{0} \in\left[\gamma_{1}, \pi / 2-\gamma_{1}\right]$
$A_{\mathrm{SC}}^{\sim}=2 n \pi \omega \pm \mathrm{O}\left(\omega^{N+1}\right) \quad \omega \downarrow 0$ uniformly for $x_{0} \in\left[0, \gamma_{1}\right] \cup\left[\pi / 2-\gamma_{1}, \pi / 2\right]$
where $\gamma_{1}=\mathrm{O}\left(\omega^{N}\right)$, whence the following asymptotic equation in \mathscr{E} :

$$
A \pm 2 x_{0} \omega+\mathrm{O}\left(\omega^{2}\right)=A_{C}(\mathbb{E}) \quad \omega \downarrow 0
$$

Therefore the hypothesis (2.5) and the monotonicity of the band functions $\mathscr{E}_{=}\left(n, x_{0}\right)$ in $0 \leqslant x_{0} \leqslant \pi / 2$, yield the asymptotic behaviour:

$$
\begin{align*}
\mathscr{E}_{:}\left(n, x_{0}\right) & =\varepsilon\left(A \pm 2 x_{1 j} \omega+\mathrm{O}\left(\omega^{2}\right)\right) \\
& =\varepsilon(A)+\frac{ \pm 4 \omega x_{0}+\mathrm{O}\left(\omega^{2}\right)}{\int_{B 3}\left[\varepsilon(A)-E_{1}(k)\right]^{-1 / 2} \mathrm{~d} k} \quad \omega \downarrow 0 . \tag{2.15}
\end{align*}
$$

Then the spectrum of $\tilde{H}_{\mathrm{D}}\left(x_{0}\right)$ and $\tilde{H}_{\mathrm{SB}}\left(x_{0}\right)$ in the interval $\left[E_{1}^{1}+\delta, E_{2}^{\mathrm{b}}\right.$), is not empty and we have the asymptotics of the eigenvalues. From the band theory, applied to the operators (2.9) and (2.11), we have the monotonicity of $\varepsilon_{n}^{\mathrm{D}}\left(x_{0}\right)$ and $\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)$ in x_{0} with $0 \leqslant x_{0} \leqslant \pi / 2$ and the following asymptotic behaviour of the band functions:

$$
\begin{array}{ll}
\varepsilon_{2 n+1}^{\mathrm{SB}}\left(x_{0}\right)=\varepsilon_{2 n+1}^{\mathrm{D}}\left(x_{0}\right)+\mathrm{O}\left(\omega^{2}\right)=\varepsilon_{+}\left(n, x_{0}\right)+\mathrm{O}\left(\omega^{2}\right) & \omega \downarrow 0 \\
\varepsilon_{2 n}^{\mathrm{SB}}\left(x_{0}\right)=\varepsilon_{2 n}^{\mathrm{D}}\left(x_{0}\right)+\mathrm{O}\left(\omega^{2}\right)=\varepsilon_{-}\left(n, x_{0}\right)+\mathrm{O}\left(\omega^{2}\right) & \omega \downarrow 0 .
\end{array}
$$

Remark 2.4. For $x_{0}=0$ the eigenfunctions and their derivatives are even or odd, hence the asymptotics:

$$
\begin{align*}
& \psi_{2 n}^{\mathrm{SB}}(k)=\frac{u_{0}^{-1 / 2}(k) \cos \left(\omega^{-1} \int_{-1}^{k} u_{0}(\tau) \mathrm{d} \tau\right)}{\left(\int_{B} u_{0}^{-1}(k) \mathrm{d} k\right)^{1 / 2}}+\mathrm{O}(\omega) \\
& \psi_{2 n+1}^{\mathrm{SB}}(k)=\frac{u_{0}^{-1 / 2}(k) \sin \left(\omega^{-1} \int_{-1}^{k} u_{0}(\tau) \mathrm{d} \tau\right)}{\left(\int_{\beta \beta} u_{0}^{-1}(k) \mathrm{d} k\right)^{1 / 2}}+\mathrm{O}(\omega) \tag{2.16}\\
& \omega \frac{\mathrm{d} \psi_{2 n}^{\mathrm{SB}}}{\mathrm{~d} k}=-u_{0}(k) \psi_{2 n+1}^{\mathrm{SB}}(k)+\mathrm{O}(\omega) \\
& \omega \frac{\mathrm{d} \psi_{2 n+1}^{\mathrm{SB}}}{\mathrm{~d} k}=u_{0}(k) \psi_{2 n}^{\mathrm{SB}}(k)+\mathrm{O}(\omega)
\end{align*}
$$

From (2.7) we get immediately the following estimate for the isolation distance $d_{n}\left(x_{0}\right)$ of the nth eigenvalue:

$$
\begin{array}{ll}
d_{n}\left(x_{0}\right)=C_{2} \omega\left[\min \left\{x_{0}, \pi / 2-x_{0}\right\}+\mathrm{O}(\omega)\right] & \omega \downarrow 0 \\
C_{2}=8\left(\int_{B} \frac{\mathrm{~d} k}{\sqrt{\varepsilon(A)-E_{1}(k)}}\right)^{-1} \geqslant 4 \delta^{1 / 2}>0 & \varepsilon(A)>E_{1}^{\mathrm{t}}+\delta \tag{2.17}
\end{array}
$$

uniformly for $x_{0} \in\left(\gamma_{2}, \pi / 2-\gamma_{2}\right)$ where $\gamma_{2}=\omega^{\prime *}, 0<\alpha<1$, and $A=2\left[\frac{\prime \prime}{2}\right] \pi \omega$. Moreover we have the following estimate of the gap width:

$$
\begin{equation*}
G_{n}^{\mathrm{SB}}=G_{n}^{1)}+\mathrm{O}\left(\omega^{2}\right)=\mathrm{O}\left(\omega^{2}\right) \quad \omega \downarrow 0 \tag{2.18}
\end{equation*}
$$

where
$G_{2 n}^{\mathrm{SB} / \mathrm{D}}=\varepsilon_{2 n-1}^{\mathrm{SB} / \mathrm{D}}(0)-\varepsilon_{2 n}^{\mathrm{SB} \cdot \mathrm{D}}(0) \quad G_{2 n-1}^{\mathrm{SBP} \mathrm{D}}=\varepsilon_{2 n}^{\mathrm{SB} / \mathrm{P}}(\pi / 2)-\varepsilon_{2 n-1}^{\mathrm{SB} / \mathrm{P}}(\pi / 2) \quad n \geqslant 1$.
The estimate of the instability gap and the asymptotic expansion for the eigenvalues $\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right), x_{0}=0, \pi / 2$, can be also obtained starting from the ones given in Weinstein and Keller (1987). In particular, they proved that the eigenvalue $\varepsilon_{n}^{\mathrm{D}}\left(x_{0}\right)$, for $x_{0}=0$, of the operator defined in (2.11) with periodic boundary conditions has the following asymptotic expansion:
$\varepsilon_{n}^{\prime D}(0) \approx \varepsilon(A)-\frac{(-1)^{\prime \prime}}{\pi}\left(\int_{\mathcal{B}} \frac{\mathrm{d} k}{\sqrt{\varepsilon(A)-E_{1}(k)}}\right)^{-1} \exp \left(-\frac{1}{\omega} \int_{-m(A)}^{+m(A)} \sqrt{\varepsilon(A)-E_{1}(1+\mathrm{i} \sigma)} \mathrm{d} \sigma\right)$
where $\pm m(A)$ are the imaginary parts of the solutions $E_{1}(k)=\varepsilon(A), \varepsilon(A) \geqslant E_{1}^{t}+K \omega^{\beta}$, $K>0,0<\beta<1$. Hence the nth gap width $G_{n}^{1)}$ is exponentially small for small ω (a similar behaviour is obtained for $x_{0}=\pi / 2$).

Thus, introducing the bounded perturbation $\omega^{2}\left(\tilde{W}_{1}^{2}\right)_{1,1}(k)$, we obtain a gap estimate in agreement with the one given in (2.18).

Now we are ready to describe the behaviour of the magnetic band function $\varepsilon_{n}\left(x_{0}\right)$, $\varepsilon_{n}\left(x_{0}\right) \in\left[E_{1}^{\mathrm{b}}+\delta, E_{2}^{\mathrm{b}}-\delta\right]$. In particular we prove theorem 2.6 and remark 2.7 , the existence of the eigenvalues $\varepsilon_{n}\left(x_{0}\right), \quad x_{11} \in \mathscr{B}^{\prime}$, and we approximate them, modulo $\mathrm{O}\left(\omega^{1+\alpha}\right), 0<\alpha<1, \omega \downarrow 0$, by the unperturbed one.

Let us state the following technical lemma.
Lemma 2.5. For any $\omega>0, \omega<\omega_{0}$, there exist $\eta_{0}>\omega, K>0$ such that for any α, $0<\alpha<1$, and for any $x_{10} \in\left(\gamma_{2}, \pi / 2-\gamma_{2}\right), \gamma_{2}=\omega^{\prime \prime}$, the resolvent $R(z, \eta)=\left[T_{v_{1}}(\eta)-z\right]^{\prime}$ is analytic in η for $|\eta|<\eta_{0}$, for any $z \in \Gamma$ fixed, if the unperturbed eigenvalue $\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)$ lies in $\left[E_{1}^{\mathrm{i}}+\delta, E_{2}^{\mathrm{b}}-\delta\right]$. Here $\delta=K \omega^{2(1-(\mathrm{r}) / 3}$ and Γ is the circle around $\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)$ with radius $d_{n}=\mathrm{O}\left(\omega^{(1+(x)}\right)$.

Moreover, there exist $h_{0}>0, C_{3}>0$ such that $K=\left(C_{3} h^{2}\right)^{2 / 3}$ for $h<h_{0}$.
Proof. Let us consider the resolvent

$$
R(z, \eta)=\left[T_{4,}(\eta)-z\right]^{-1} \quad z \in \Gamma
$$

where Γ is the circle around $\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)$ with radius (see 2.17)

$$
d_{n}=\frac{1}{2} \inf _{\left.\gamma_{v_{1}=1}=, \pi / 2-\gamma_{2}\right)} d_{n}\left(x_{n}\right)=\frac{1}{2} C_{2}\left(\omega^{(1+\alpha)}+\mathrm{O}\left(\omega^{2}\right)\right)=\mathrm{O}\left(\omega^{\left(1++e^{1}\right.}\right) \quad \omega \downarrow 0 .
$$

The resolvent admits the following power series expansion in η (see Kato (1984) ch VII, formula 4.20):

$$
\begin{align*}
& R(z, \eta)=R(z, 0)+\left[T_{,, 1}(0)+\rho\right]^{-1: 2}\left[T_{\mathrm{k}},(0)+\rho\right] R(z, 0) \\
& \times\left(\sum_{i=1}^{r}(-\eta)^{\prime}\left(S_{\mathrm{v}, 1}^{\prime}\left[T_{\mathrm{k},}(0)+\rho\right] R(z, 0)\right)^{\prime}\right)\left[T_{x_{i}, 1}(0)+\rho\right]^{1 / 2} \tag{2.19}
\end{align*}
$$

where $\rho=(1 / \mu)\left(L_{i}^{2} / \mu-\mu E_{1}^{h}\right)+\sigma, \mu>0, \sigma>0$ arbitrary and $S_{\mathrm{x}_{1},}^{\prime}$ is the bounded operator defined by

$$
S_{\checkmark, n}^{\prime}=\left[T_{\mathrm{v}, 1}(0)+\rho\right]^{-1 / 2} S_{, ~}\left[T_{, ~}(0)+\rho\right]^{-1 / 2}
$$

with bound $\left\|S_{\stackrel{r}{\prime}, \|}^{\prime}\right\| \leqslant 2 \mu$ from (2.4). Notice that $S_{\mathrm{r}_{\mathrm{r}}}^{\prime}$ is the only operator in (2.19) coupling the first band with the others.

Hence, the convergence radius r_{0}, of the series (2.19) is given by

$$
r_{0}=\sup \left\{\left|\eta\left\|\eta \in \mathbb{C},|\eta|^{2}\right\|\left(S_{2}^{\prime}\left[T_{v_{1}, 1}(0)+\rho\right] R(=, 0)\right)^{2} \|<1\right\}\right.
$$

We have the following estimates for any $x \in \Gamma$:

$$
\begin{align*}
& \left\|\left(S_{x, i}^{\prime}\left[T_{, ~ 1}(0)+\rho\right] R(z, 0)\right)^{2}\right\| \\
& \leqslant 2\left\|P_{1}^{\prime} S_{x_{1}}^{\prime} P_{1}\left[T_{\mathrm{v}, 1}(0)+\rho\right] R(z, 0) P_{1}\right\|\left\|P_{1} S_{\mathrm{v}_{1}}^{\prime} P_{1}^{\prime}\left[T_{\mathrm{v}_{\mathrm{v}}}(0)+\rho\right] R(z, 0) P_{1}^{\prime}\right\| \\
& \leqslant 8 \mu^{2}\left\|P_{1}\left[T_{\mathrm{h}_{1}}(0)+\rho\right] R(z, 0) P_{1}\right\|\left\|P_{1}^{\prime}\left[T_{\mathrm{v}}(0)+\rho\right] R(z, 0) P_{1}^{\prime}\right\| \\
& \leqslant 32\left[\frac{\mu^{-1} L_{i}^{2}+\mu\left(\varepsilon_{n}^{\mathrm{SB}}-E_{1}^{\mathrm{b}}\right)}{d_{n}\left(x_{0}\right)}+\mu\right]\left[\frac{\mu^{-1} L_{\mathrm{i}}^{2}+\mu\left(\varepsilon_{n}^{\mathrm{SB}}-E_{1}^{\mathrm{b}}\right)}{E_{2}^{b}-\varepsilon_{n}^{\mathrm{SB}}}+\mu\right] \\
& \leqslant \frac{C_{4}}{\delta d_{n}} \tag{2.20}
\end{align*}
$$

where $C_{4}=C_{3} h^{2}$ for $h<h_{0}$ as in lemma 2.1,

$$
C_{3}=32\left(\mu^{-1} C_{1}^{2}+\mu \frac{\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)-E_{1}^{\mathrm{h}}}{h}\right)^{2} .
$$

Now, lemma 2.5 follows immediately from the above estimates. In fact we fix $\eta_{0}=$ $\sqrt{\delta d_{n} / C_{4}}$, so that, by (2.20),

$$
r_{0} \geqslant \eta_{0}=\sqrt{\frac{\delta d_{n}}{C_{4}}}
$$

Now we impose the condition $\eta_{0}>\omega$, obtaining the following inequality:

$$
\begin{equation*}
\eta_{0}^{2}=\frac{\delta d_{n}}{C_{4}}=\frac{C_{2} \delta\left(\omega^{1+\alpha}+\mathrm{O}\left(\omega^{2}\right)\right)}{2 C_{4}}>\omega^{2} . \tag{2.21}
\end{equation*}
$$

Equation (2.21) is satisfied if we choose $\delta C_{2} / 2 C_{4}>\omega^{1-\alpha}$ for $\omega<\omega_{0}, \omega_{0}>0$ small, i.e.

$$
\delta=\left(\omega^{1-\alpha} C_{3} h^{2}\right)^{2 / 3} \quad h<h_{0} \quad 0<\alpha<1 .
$$

Our main result is the following.
Theorem 2.6. There exist $\omega_{0}>0, K>0$ such that for any $\alpha, 0<\alpha<1, x_{0} \in\left(\gamma_{2}, \pi / 2-\gamma_{2}\right)$, $\gamma_{2}=\omega^{\alpha}, \omega<\omega_{0}$, the spectrum of $\tilde{H}_{\varkappa,}$ in $\left[E_{1}^{t}+\delta, E_{2}^{\natural}-\delta\right], \delta=K \omega^{2(1-\alpha) / 3}$, consists of the eigenvalues:

$$
\begin{align*}
\varepsilon_{n}\left(x_{0}\right)=\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)+\mathrm{O}\left(\omega^{1+\alpha)}\right)=\varepsilon_{n}^{\mathrm{D}}\left(x_{0}\right)+\mathrm{O}\left(\omega^{(1+\alpha)}\right) & \omega \downarrow 0 \\
& =\varepsilon(A)-(-1)^{n} 4 \omega x_{0}\left(\int_{-\beta}\left[\varepsilon(A)-E_{1}(k)\right]^{-1 / 2} \mathrm{~d} k\right)^{-1}+\mathrm{O}\left(\omega^{\left(1+\omega^{3}\right.}\right) \tag{2.22}
\end{align*} \omega \downarrow 0
$$

where $A=2\left[\frac{n}{2}\right] \pi \omega$ is such that $A_{C}\left(E_{2}^{\mathrm{b}}-\delta\right) \geqslant A \geqslant A_{C}\left(E_{1}^{\}}+\delta\right)$. Here $\varepsilon(A)$ is the inverse function of the classical action $A_{C}(\mathscr{E})$.

Moreover there exists $h_{0}>0$ such that for $h<h_{0}, K=\left(C_{3} h^{2}\right)^{2 / 3}$.
Proof. Let $\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right) \in\left[E_{1}^{\mathrm{t}}+\delta, E_{2}^{\mathrm{b}}-\delta\right]$ as we have shown in theorem 2.3. From lemma 2.5 the resolvent $R(z, \eta)$ is analytic in $\eta,|\eta|<\eta_{0}, \eta_{0}>\omega$, for any fixed $x \in \Gamma$. Hence Γ encloses $\varepsilon_{n}\left(x_{0}\right)$ and $\varepsilon_{n}^{\mathrm{SB}}\left(x_{1}\right)$, so that:

$$
\left|\varepsilon_{n}\left(x_{0}\right)-\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)\right| \leqslant d_{n}=\mathrm{O}\left(\omega^{\left(1+\alpha^{2}\right.}\right) \quad \omega \downarrow 0
$$

and so (2.22) follows from formula (2.7) given in theorem 2.3.
Remark 2.7. For any $x_{0} \in\left[0, \gamma_{2}\right] \cup\left[\pi / 2-\gamma_{2}, \pi / 2\right]$ we have similar results for the couple of eigenvalues $\varepsilon_{2 n+1}\left(x_{0}\right), \varepsilon_{2 n}\left(x_{0}\right)$, for $x_{0} \in\left[0, \gamma_{2}\right]\left(\varepsilon_{2 n}\left(x_{0}\right), \varepsilon_{2 n-1}\left(x_{0}\right)\right.$, for $x_{0} \in$ [$\left.\pi / 2-\gamma_{2}, \pi / 2\right]$), as can be seen from the degenerate pertrubation theory applied to a couple of eigenvalues enclosed in a path Γ with its points separated by at least $\mathrm{O}\left(\omega^{(1+(x)}\right), 0<\alpha<1$, from both eigenvalues.

In particular we obtain the following asymptotic behaviour for any $x_{0} \in \mathscr{B}$:

$$
\begin{align*}
\varepsilon_{n}\left(x_{0}\right) & =\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)+\mathrm{O}\left(\omega^{(1+\alpha)}\right)=\varepsilon_{n}^{\mathrm{D}}\left(x_{0}\right)+\mathrm{O}\left(\omega^{(1+\alpha)}\right) \quad \omega \downarrow 0 \\
& =\varepsilon(A)-(-1)^{n} 4 \omega x_{0}\left(\int_{B}\left[\varepsilon(A)-E_{1}(k)\right]^{-1 / 2} \mathrm{~d} k\right)^{-1}+\mathrm{O}\left(\omega^{(1+\alpha)}\right) \quad \omega \downarrow 0 . \tag{2.23}
\end{align*}
$$

The two eigenvalues in the couple can approach without crossing each other for $0 \leqslant \eta \leqslant \omega$. By (2.23) we have an upper bound for the minimal distance of the eigenvalues of the order of $\mathrm{O}\left(\omega^{(1+())}\right), \omega \downarrow 0$. In particular we estimate the magnetic gap width as

$$
G_{n}=\mathrm{O}\left(\omega^{(1+\alpha)}\right) \quad \omega \downarrow 0 \quad \text { where } G_{n}=\varepsilon_{n+1}^{\mathrm{h}}-\varepsilon_{n}^{\mathrm{t}} .
$$

The small ω asymptotics at $x_{0}=0$ of the eigenfunctions $\psi_{2 n}\left(\psi_{2 n+1}\right)$ are given by
$\left(\psi_{2 n}\right)(m, k)=\delta_{1}^{m} \psi_{2 n}^{\mathrm{SB}}(k)+\mathrm{O}(\omega) \quad\left(\psi_{2 n+1}\right)(m, k)=\delta_{1}^{m} \psi_{2 n+1}^{\mathrm{SB}}(k)+\mathrm{O}(\omega)$
where the asymptotics of $\psi_{2 n}^{\mathrm{SB}}(k)\left(\psi_{2 n+1}^{\mathrm{SB}}(k)\right)$ are given in (2.16).
Moreover, for $x_{0} \in \mathscr{B}{ }^{\prime}$ fixed and $\varepsilon(A) \in\left[E_{1}^{\mathrm{t}}+\delta, E_{2}^{\mathfrak{h}}-\delta\right], \delta>0$ fixed, we have the better estimates:

$$
\begin{aligned}
\varepsilon_{n}\left(x_{0}\right) & =\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)+\mathrm{O}\left(\omega^{2}\right)=\varepsilon_{n}^{\mathrm{D}}\left(x_{0}\right)+\mathrm{O}\left(\omega^{2}\right) \quad \omega \downarrow 0 \\
& =\varepsilon(A)-(-1)^{n} 4 \omega x_{0}\left(\int_{-3}\left[\varepsilon(A)-E_{1}(k)\right]^{-1 / 2} \mathrm{~d} k\right)^{-1}+\mathrm{O}\left(\omega^{2}\right) \quad \omega \downarrow 0
\end{aligned}
$$

Remark 2.8. The estimate of the gap width G_{n} given in remark 2.7 is far from being optimal; in fact the following heuristic calculus proves that the magnetic gap width $G_{2 n} \leqslant G(E)=\varepsilon_{2 n+1}(0)-\varepsilon_{2 n}(0), E=\varepsilon_{2 n+1}(0)$, is of order $\mathrm{O}\left(\mathrm{e}^{-C / \omega}\right)$ (or equivalently $\left.G_{2 n+1} \leqslant G(E)=\varepsilon_{2 n+2}(\pi / 2)-\varepsilon_{2 n+1}(\pi / 2), \quad E=\varepsilon_{2 n+1}(\pi / 2)\right)$ as the unperturbed one (remark 2.4) where $C=C(E)>0, \omega \downarrow 0$ and $E \in\left(E_{1}^{\mathrm{t}}, E_{2}^{h}\right)$.

This estimate comes from the x-dependent band picture as illustrated in the introduction and in figure 1: we consider the problem at $x_{0}=0$ as locally Bloch with x-dependent bands: $E^{t / h}(x)=E_{1}^{t / h}+\omega^{2} x^{2}$, so that a gap acts locally as a potential barrier with Zener exponential behaviour of the solution ϕ, i.e.

$$
\phi\left(x_{2}\right) \approx \phi\left(x_{1}\right) \exp \left[\pm \chi\left(E\left(x_{2}\right)\right)\left(x_{2}-x_{1}\right)\right] \quad x_{2}-x_{1}=n \pi, E\left(x_{2}\right) \in\left(E_{1}^{\mathrm{t}}, E_{2}^{\mathrm{b}}\right) \text {, as } \omega \downarrow 0
$$

where $\chi(E)=|\Sigma k(E)|, k(E)$ being the crystal momentum in the gap. Hence the exponential decay of the wavefunction, i.e. the transmission amplitude $T(E)$, from the extreme \bar{x} to the middle of the barrier is given by $\exp \left(-\int_{0}^{\bar{x}} \chi(E(x)) \mathrm{d} x\right)$ where $\bar{x}=\sqrt{ } E-E_{\mathrm{1}}^{\mathrm{t}} / \omega$. So we estimate the gap as the splitting of the double-well beating effect:

$$
\begin{equation*}
G(E) \approx T^{2}(E) \approx \exp \left(-2 \int_{0}^{\bar{x}} x(E(x)) \mathrm{d} x\right) \approx \mathrm{e}^{-C(E) / \omega} \quad \omega \downarrow 0 \tag{2.24}
\end{equation*}
$$

where

$$
C(E)=\int_{E_{i}^{\prime}}^{E} \frac{\chi(E) \mathrm{d} E}{\sqrt{E-E_{1}^{\prime}}}
$$

Remark 2.9. Using the degenerate perturbation theory applied to the analytic family of type (A) $H_{0}+W_{x_{0}}, W_{x_{0}}=\omega x_{0}(2 \omega x)+\omega^{2} x_{0}^{2}$, we can control the magnetic band functions for x_{0} in a neighbourhood of $0(\pi / 2)$.

We use the degenerate perturbation theory, for $\left|x_{0}\right| \ll\left(\pi \varepsilon^{\prime}(A) / 2 \sqrt{\varepsilon(A)}\right)$, for the two states $2 n+1$ and $2 n$ since

$$
\left|\varepsilon_{2 n+1}(0)-\varepsilon_{2 n}(0)\right|=\mathrm{O}\left(\omega^{2}\right)
$$

and

$$
\left|\varepsilon_{2 n}(0)-\varepsilon_{2 m}(0)\right| \geqslant 2 \pi \varepsilon^{\prime}(A) \omega+\mathrm{O}\left(\omega^{2}\right) \quad m \neq n, A=2 n \pi \omega
$$

Up to the first order in x_{0}, we have all the 'avoided crossings' of $\varepsilon_{2 n+1}\left(x_{0}\right), \varepsilon_{2 n}\left(x_{0}\right)$ near $x_{0}=0$. In particular, if we call $\lambda_{+}\left(x_{0}\right)=\varepsilon_{2 n+1}\left(x_{0}\right), \lambda_{-}\left(x_{0}\right)=\varepsilon_{2 n}\left(x_{0}\right), \omega \hat{x}=\left\langle\phi_{2 n+1}(0)\right.$, $\left.\omega x \phi_{2 n}(0)\right\rangle$, where $\phi_{n}\left(x_{0}\right)$ is the normalised eigenvector associated with the eigenvalue $\varepsilon_{n}\left(x_{0}\right)$, we have
$\lambda_{ \pm}\left(x_{0}\right)=\frac{\lambda_{+}(0)+\lambda_{-}(0)+2 x_{0}^{2} \omega^{2}}{2} \pm\left(\frac{\left(\lambda_{+}(0)-\lambda_{-}(0)\right)^{2}}{4}+4 \omega^{2} x_{0}^{2}|\omega \hat{x}|^{2}\right)^{1 / 2}+\mathrm{O}\left(\omega x_{0}^{2}\right)$
with the two behaviours:
$\lambda_{\star}\left(x_{0}\right)= \begin{cases}\lambda_{-}(0)+x_{0}^{2} \omega^{2} \pm 4 \frac{\omega^{2} x_{0}^{2}|\omega \hat{x}|^{2}}{\lambda_{+}(0)-\lambda_{-}(0)}+\mathrm{O}\left(\omega x_{0}^{2}\right) & \left|x_{0}\right| \ll \frac{\lambda_{+}(0)-\lambda_{-}(0)}{4 \omega|\omega \hat{x}|} \\ \left(\frac{\lambda_{+}(0)+\lambda_{-}(0)}{2}+x_{0}^{2} \omega^{2} \pm\left. 2 \omega\left|x_{0}\right| \omega \hat{x}\right|^{2}+\mathrm{O}\left(\omega x_{0}^{2}\right)\right. & \left|x_{0}\right| \gg \frac{\lambda_{+}(0)-\lambda_{-}(0)}{4 \omega|\omega \hat{x}|}\end{cases}$
where (2.27) is in agreement with (2.22) for $\left|x_{0}\right| \geqslant \omega^{\prime \prime}, 0<\alpha<1$, if (as can be easily checked by (2.16)):

$$
\begin{align*}
|\omega \hat{x}| & =\left|\left\langle\phi_{2 n+1}(0), \omega x \phi_{2 n}(0)\right\rangle\right| \\
& =\left|\left\langle\psi_{2 n+1}^{\mathrm{SB}}, \mathrm{i} \omega \frac{\partial}{\partial k} \psi_{2 n}^{\mathrm{SB}}\right\rangle_{L^{2}(\cdot n)}\right|+\mathrm{O}(\omega) \\
& =\varepsilon^{\prime}(A)+\mathrm{O}(\omega) \quad \omega \downarrow 0 \tag{2.28}
\end{align*}
$$

where

$$
\varepsilon^{\prime}(A)=\left(\int_{\mathscr{B}} \frac{d k}{2 \sqrt{\varepsilon(A)-E_{1}(k)}}\right)^{-1} .
$$

From (2.25) and (2.28) we obtain the monotonicity of $\lambda_{ \pm}\left(x_{0}\right)$ for $\left|x_{0}\right| \leqslant \omega^{\alpha}, 0<\alpha<1$.
Similarly we can control the magnetic band function in a neighbourhood of $\pi / 2$.
From (2.22) and remark 2.9 we can state the following.
Proposition. The magnetic band functions satisfy the following equations for ω small enough:

$$
\begin{aligned}
& \varepsilon_{n}^{\natural}=\min _{x_{n} \in \neq \beta^{\prime}} \varepsilon_{n}\left(x_{0}\right)= \begin{cases}\varepsilon_{n}(0) & n \text { odd } \\
\varepsilon_{n}(\pi / 2) & n \text { even }\end{cases} \\
& \varepsilon_{n}^{1}=\max _{x_{n} \in \neq \beta^{\prime}} \varepsilon_{n}\left(x_{0}\right)= \begin{cases}\varepsilon_{n}(\pi / 2) & n \text { odd } \\
\varepsilon_{n}(0) & n \text { even }\end{cases}
\end{aligned}
$$

with all the magnetic gaps $\left(\varepsilon_{n}^{l}, \varepsilon_{n+1}^{\mathrm{b}}\right), n \geqslant 1$, not empty since $H_{\mathrm{x}_{1},}$ has simple eigenvalues.
Remark 2.10. For reasons of completeness we give the following upper bound for $\varepsilon_{n}^{\prime}\left(x_{0}\right)$ (' means $\mathrm{d} / \mathrm{d} x_{0}, \omega$ fixed), very similar to the estimate given for the band function of a Bloch operator (see theorem 2.1 of Avron and Simon 1981):

$$
\begin{equation*}
\left|\varepsilon_{n}^{\prime}\left(x_{0}\right)\right| \leqslant 2 \omega \sqrt{\varepsilon_{n}\left(x_{0}\right)-E_{1}^{h}} \quad x_{0} \in \mathscr{B}^{\prime}, \omega>0 . \tag{2.29}
\end{equation*}
$$

In fact, by the Schwarz inequality

$$
\begin{aligned}
\left|\varepsilon_{n}^{\prime}\left(x_{0}\right)\right| & =2 \omega^{2}\left|\left\langle\phi_{n}\left(x_{0}\right),\left(x-x_{0}\right) \phi_{n}\left(x_{0}\right)\right\rangle\right| \\
& \leqslant 2 \omega \sqrt{\varepsilon_{n}\left(x_{0}\right)-\left\langle\phi_{n}\left(x_{0}\right),\left(p^{2}+V\right) \phi_{n}\left(x_{0}\right)\right\rangle} \\
& \leqslant 2 \omega \sqrt{\varepsilon_{n}\left(x_{0}\right)-\left\langle\left(\dot{U} \phi_{n}\left(x_{0}\right)\right), \tilde{H}_{\mathrm{B}}\left(\tilde{U} \phi_{n}\left(x_{0}\right)\right)\right\rangle_{\Theta_{n}^{\prime}, ~}^{L^{2}(\cdot \beta)}} \\
& \leqslant 2 \omega \sqrt{\varepsilon_{n}\left(x_{0}\right)-E_{1}^{h}} .
\end{aligned}
$$

Moreover, we can also obtain an upper bound for $\partial \varepsilon_{n}\left(x_{0}\right) / \partial \omega$ for $x_{0} \in \mathscr{B}^{\prime}$ and $\omega>0$:

$$
\begin{align*}
0 \leqslant \frac{\omega}{2} \frac{\partial \varepsilon_{n}\left(x_{0}\right)}{\partial \omega} & =\left\langle\phi_{n}\left(x_{0}\right),\left(x-x_{0}\right)^{2} \phi_{n}\left(x_{1}\right)\right\rangle \\
& =\varepsilon_{n}\left(x_{0}\right)-\left\langle\left(\tilde{U}_{n}\left(x_{0}\right)\right), \tilde{H}_{B}\left(\tilde{U} \phi_{n}\left(x_{0}\right)\right)\right\rangle_{\ldots, \ldots, L^{2}(A)} \\
& \leqslant \varepsilon_{n}\left(x_{0}\right)-E_{1}^{\mathrm{b}} . \tag{2.30}
\end{align*}
$$

3. Magnetic bands in the first band energy region of the Bloch model

For small ω there are magnetic bands in the first band region [$E_{1}^{\mathrm{b}}, E_{1}^{\mathrm{l}}$] of the Bloch model. We recall that for small h the band width is exponentially small: $E_{1}^{\vdots}-E_{1}^{b}=$ $\mathrm{e}^{-C / h}, C>0$ (see Harrell 1979), so that for the asymptotic estimates below (equation (3.1)) we should take $\omega \ll \mathrm{e}^{-c / h}$ for small h.

As above, the union of the magnetic bands is the spectrum of the operator

$$
\mathscr{H}(\omega)=\int_{\mathcal{B}^{\prime}}^{\ominus} H_{x_{0}} \mathrm{~d} x_{0} .
$$

The bands are completely given by the perturbation theory, but not explicitly as in the gap region. Only for n fixed do we give an explicit asymptotic behaviour (equation (3.2)). In the case of a particular model we give explicitly the h, ω behaviour of the first magnetic band.

Theorem 3.1. For any $x_{0} \in \mathscr{B}^{\prime}$, the spectrum of $H_{\mathrm{v},}$ in the interval [$E_{1}^{\mathrm{h}}, E_{1}^{\mathrm{i}}$], is given by the magnetic band function satisfying the following asymptotic behaviour:

$$
\begin{equation*}
\varepsilon_{n}\left(x_{0}\right)=\varepsilon_{n}^{\mathrm{D}}\left(x_{0}\right)+\mathrm{O}\left(\omega^{2}\right)=\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)+\mathrm{O}\left(\omega^{2}\right) \quad \omega \downarrow 0, x_{0} \in \mathcal{B}^{\prime} \tag{3.1}
\end{equation*}
$$

Each magnetic band in [$\left.E_{1}^{\mathrm{b}}, E_{1}^{t}-K \omega^{\beta}\right], 0<\beta<1, K>0$, has band width vanishing at least as $O\left(\omega^{2}\right)$ and the isolation distance vanishing as $O(\omega)$ for $\omega \downarrow 0$.

Moreover, for n fixed we have the following asymptotic behaviour:

$$
\begin{equation*}
\varepsilon_{n}\left(x_{0}\right)=E_{1}^{\mathrm{h}}+\omega\left(n-\frac{1}{2}\right) \sqrt{2 E_{1}^{\prime \prime}(0)}+\mathrm{O}\left(\omega^{2}\right) \quad \omega \downarrow 0, n \geqslant 1 . \tag{3.2}
\end{equation*}
$$

Proof. Mimicking the proof of theorem 2.3, we give the single-band approximation of the operator (2.1):

$$
\tilde{H}_{\mathrm{SB}}\left(x_{0}\right)=-\omega^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} k^{2}}+E_{1}(k)+\omega^{2}\left(\tilde{W}_{\mathrm{i}}^{2}\right)_{1,1}(k)
$$

with boundary conditions (2.10). Since $\left(\tilde{W}_{1}^{2}\right)_{1,1}(k)$ is bounded, the band functions of the single-band approximation in the interval $\left[E_{1}^{\mathrm{b}}, E_{1}^{1}\right]$ are, modulo $\mathrm{O}\left(\omega^{2}\right)$, given by the Bloch operator
$\tilde{H}_{\mathrm{D}}\left(x_{0}\right)=-\omega^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} k^{2}}+E_{1}(k) \quad$ with boundary conditions (2.10).
Its band functions are calculated by Harrell (1979) and Weinstein and Keller (1985, 1987). In particular Harrell (1979) and Weinstein and Keller (1985) prove, under some
hypothesis on the potential, that the mean values of the band functions for n fixed are asymptotically given by

$$
\overline{\varepsilon_{n}^{\overline{2}}}=E_{1}^{h}+\omega\left(n-\frac{1}{2}\right) \sqrt{2 E_{1}^{\prime \prime}(0)}+\mathrm{O}\left(\omega^{2}\right) \quad \omega \downarrow 0, n<N(\omega)
$$

and the band width is exponentially small: $\left|\varepsilon_{n}^{D}(0)-\varepsilon_{n}^{D}(\pi / 2)\right| \approx \mathrm{O}\left(\mathrm{e}^{-c^{\prime} / \omega}\right), C>0$.
Hence

$$
\begin{align*}
\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right) & =\overline{\varepsilon_{n}^{\mathrm{D}}}+\mathrm{O}\left(\omega^{2}\right) \\
& =E_{1}^{\mathrm{b}}+\omega\left(n-\frac{1}{2}\right) \sqrt{2 E_{1}^{\prime \prime}(0)}+\mathrm{O}\left(\omega^{2}\right) \quad \omega \downarrow 0, n<N(\omega), x_{0} \in \mathscr{B}^{\prime} \tag{3.4}
\end{align*}
$$

and

$$
G_{n}^{\mathrm{SB}}=G_{n}^{\mathrm{D}}+\mathrm{O}\left(\omega^{2}\right)=\omega \sqrt{2 E_{1}^{\prime \prime}(0)}+\mathrm{O}\left(\omega^{2}\right) \quad \omega \downarrow 0, n<N(\omega)
$$

Since the isolation distance is of the order of $\omega \sqrt{2 E_{1}^{\prime \prime}(0)}$, we can apply the perturbation theory as in lemma 2.5 and theorem 2.6, choosing the radius of the circle Γ as $d_{n}=\mathrm{O}\left(\omega^{2}\right)$, for $\omega \downarrow 0$, without any discussion at the endpoints of the interval [$0, \pi / 2$]. In particular, the series (2.19) is convergent for η such that $|\eta|<\eta_{0}, \eta_{0}>\omega$, uniformly for $x_{0} \in \mathscr{B}^{\prime}$. Hence, by (3.4), we obtain the asymptotic expansions (3.2).

We must only require that our potential $E_{1}(k)$ in (3.3) satisfies the hypothesis of the theorems given in Harrell (1979) and Weinstein and Keller (1985) cited above. This is easily proved; in fact $E_{1}(k)$ is analytic in a strip around the real axis, it is even and satisfies the inequality (see Avron and Simon 1981):

$$
E_{1}^{\prime \prime}(0) \geqslant \frac{\pi^{2}}{2 h^{2}} \exp \left[-\frac{\pi}{h}\left(h+\sqrt{E_{1}(0)}+\sqrt{\|V\|_{x}}\right)\right]>0
$$

Now, let us consider all the magnetic band functions in the interval [$E_{1}^{\mathrm{b}}, E_{1}^{\mathrm{l}}$]. As above, we use the semiclassical results (see Weinstein and Keller 1987) for the operator (3.3).

If n satisfies the inequalities

$$
C^{\prime} \omega^{\beta^{\prime}-1} \leqslant n \leqslant \frac{1}{\pi \omega} \int_{\mathscr{\beta}} \sqrt{E_{1}^{\mathrm{t}}-E_{1}(k)} \mathrm{d} k-C \omega^{\beta-1}
$$

for some $C>0, C^{\prime}>0,0<\beta<1,0<\beta^{\prime}<1$, then the band functions $\varepsilon_{n}^{\mathrm{D}}\left(x_{0}\right)$ at the endpoints satisfy the asymptotic inequalities

$$
E_{1}^{\mathrm{b}}+K^{\prime} \omega^{\beta^{\prime}} \leqslant \varepsilon_{n}^{\mathrm{D}}\left(x_{0}\right) \leqslant E_{1}^{\mathrm{t}}-K \omega^{\beta} \quad x_{0}=0, \pi / 2
$$

where $K>0$ is proportional to $C, K^{\prime}=C^{\prime} \sqrt{2 E_{1}^{\prime \prime}(0)}>0$, and the gap width G_{n}^{D} has the following behaviour as $\omega \downarrow 0$:

$$
G_{n}^{\mathrm{D}} \approx C_{5} \omega \quad C_{5}=2 \pi\left(\int_{-\overline{5}}^{\overline{5}}\left[\varepsilon_{n}^{\mathrm{D}}-E_{1}(k)\right]^{-1 / 2} \mathrm{~d} k\right)^{-1}
$$

where $\pm \bar{k}$ are the classical turning points, i.e. $E_{1}(\pm \bar{k})=\varepsilon_{n}^{\text {D }}$.
Hence $G_{n}^{\mathrm{SB}}=G_{n}^{\mathrm{D}}+\mathrm{O}\left(\omega^{2}\right) \approx C_{5} \omega$.
Since the isolation distance of the eigenvalue $\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right)$ is greater than $C_{5} \omega$, we obtain the asymptotic behaviour (3.1) applying the perturbation theory as done in lemma 2.5 and theorem 2.6 with the choice $d_{n}=\mathrm{O}\left(\omega^{2}\right)$.

Moreover, since the unperturbed band function $\varepsilon_{n}^{D}\left(x_{0}\right)$ has exponentially small band width, we can estimate, by (3.1), the band width as $O\left(\omega^{2}\right)$ and the gap width as $O(\omega)$.

Finally, we can also estimate the band functions $\varepsilon_{n}^{11}\left(x_{0}\right), x_{0}=0, \pi / 2$, near the top E_{1}^{\prime} starting from the result that: if $n \approx(1 / \pi \omega) \int_{B} \sqrt{E_{1}^{\prime}-E_{1}(k)} \mathrm{d} k$ then $\varepsilon_{n}^{\prime}\left(x_{0}\right) \approx E_{1}^{\prime}$ and the gap is estimated as:

$$
G_{n}^{D)} \approx C_{6} \omega \quad C_{6}=2 \pi E_{1}^{\prime}\left(\int_{\beta} \sqrt{E_{1}^{\prime}-E_{1}(k)} \mathrm{d} k\right)^{\prime} .
$$

Hence $\varepsilon_{n}^{\mathrm{SB}}\left(x_{0}\right) \approx E_{1}^{\mathrm{t}}$ and $G_{n}^{\mathrm{SB}}=G_{n}^{\mathrm{D}}+\mathrm{O}\left(\omega^{2}\right)=\mathrm{O}(\omega), \omega \downarrow 0$, and using the perturbation theory we complete the proof of estimate (3.1).

We conclude the present section by considering a solvable problem giving a totally flat first magnetic band:

$$
\begin{aligned}
H_{x_{1, ~}^{\prime}}^{\prime}=-h^{2} & \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+\omega^{2}\left(x-x_{0}\right)^{2}+\frac{\cos ^{2} 2 x}{4}+h(1+\sin 2 x)+\omega\left(x-x_{0}\right) \cos 2 x \\
& =\left(-h \frac{\mathrm{~d}}{\mathrm{~d} x}+\omega\left(x-x_{0}\right)+\frac{\cos 2 x}{2}\right)\left(h \frac{\mathrm{~d}}{\mathrm{~d} x}+\omega\left(x-x_{0}\right)+\frac{\cos 2 x}{2}\right)+h+h \omega
\end{aligned}
$$

with x_{0}-independent first eigenvalue $h+h \omega$ and eigenvector

$$
\psi(x)=\exp \left(-\frac{\omega\left(x-x_{0}\right)^{2}}{2 h}-\frac{\sin 2 x}{4 h}\right)
$$

Here $V(x)=\frac{1}{4} \cos ^{2} 2 x+h(1+\sin 2 x)$. Thus we have a flat first magnetic band function

$$
\varepsilon_{1}\left(x_{0}\right)=E_{1}^{\mathrm{b}}+h \omega=h+h \omega
$$

in agreement with the behaviour given in theorem 3.1.
Actually, the term $\omega\left(x-x_{0}\right) \cos 2 x$ enables the model to only asymptotically approach the class considered above as $\omega \downarrow 0$. We recall that each true magnetic band is flat in the $\omega \downarrow 0$ limit.

Acknowledgments

It is a pleasure to thank Professor Sandro Graffi for pointing out the physical interest of this model, and Professor François Bentosela for all we have learned on the cmr. This work is partially supported by Ministero della Pubblica Istruzione.

References

Aizim G R and Volkov V A 1984 Conductivity of two-dimensional electrons in a periodic potential in a strong magnetic field Sou. Phys.-JEPT 60844
—— 1985 Wannier-Stark oscillations in narrow magnetic bands in high-index inversion layers Sov. Phys. Semicond. 191094
Avron J 1979 On the spectrum of $p^{2}+V(x)+\varepsilon x$, with V periodic and ε complex J. Phys. A: Math. Gen. 12 2393
Avron J and Simon B 1981 Almost periodic Schrödinger operators I. Limit periodic potentials Commun. Math. Phys, 82101
—— 1985 Stability of gaps for periodic potential under variations of a magnetic field J. Phys. A: Math. Gen. 182189
Bentosela F, Caliceti E, Grecchi V, Maioli M and Sacchetti A 1988 Analyticity and asymptotics for the Stark-Wannier states J. Phys. A: Math. Gen. 213321

Claro F H and Wannier G H 1979 Magnetic subband structure of electrons in hexagonal lattices Phys. Rev. B 196068
Cycon H L, Froese R G, Kirsch W and Simon B 1987 Schrödinger Operators with Application to Quantum Mechanics and Global Geometry (Berlin: Springer)
Erdelyi A 1956 Asymptotic Expansion (New York: Dover)
Guillot J C, Ralston J and Trubowitz E 1988 Semiclassical methods in solid state physics Commun. Math. Phys. 116401
Harrell E M 1979 The band structure of a one-dimensional periodic system in a scaling limit Ann. Phys, NY 119351
Helffer B and Sjöstrand J 1989 Operateurs de Schödinger avec champs magnetiques faibles et constants Preprint Ecole Polytechnique, Palaiseau
Kato T 1984 Perturbation theory for linear operators (Berlin: Springer)
Naimark M A Linear Differential Operators, part II (New York: Frederik Ungar)
Pippard A B 1969 Metallic Electrons in a magnetic field The physics of metals: Electrons ed J M Ziman (Cambridge: Cambridge University Press)
Reed M and Simon B 1978 Methods of Modern Mathematical Physics: Analysis of operators (New York: Academic)
Voros A 1982 Spectre de l'équation de Schrödinger et méthode WKB Publications Mathématique d'Orsay 81.9 (Université de Paris-Sud, Département de Mathématique, Orsay)

Weinstein I M and Keller J B 1985 Hill's equation with a large potential SIAM J. Appl. Math. 45200
——1987 Asymptotic behaviour of stability regions for Hill's equation SIAM J. Appl. Math. 47941

