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J. Phys. A: Math.  Gen .  22 (1989) 4989-5006. Printed in the U K  

Weak-field magnetic bands in superlattices and the single-band 
approximation 

Vincenzo Grecchii and Andrea Sacchetti$ 
f Dipartimento di  Matematica,  Universita degli Studi di Bologna. 1-40127 Bologna. Italy 
4 Dipartimento di Matematica, Universit i  degli Studi di Modena,  1-41 100 Modena,  Italy 

ReceiLed 3 April 1989, in final form 30 June 1989 

Abstract. We prove the existence and  we gi \e  the semiclassical magnetic dsymptotics of 
the magnetic bands in superlattices. We use the Wannier single-band approximation which 
leads to a dual semiclassical Bloch model with a band function as  potential. A picture of 
.x-dependent bands suggests exponentially small magnetic gap \\idtha as  given by the 
beating effect of a Zener double well. 

1. Introduction 

Recently considerable interest has centred on the problem of a two-dimensional electron 
moving in a periodic potential V ( x , y )  in the presence of a perpendicular magnetic 
field of strength B. The problem was studied particularly as a starting point for the 
quantum Hall effect (see for instance Aizim and  Volkov 1984, 1985, Avron and Simon 
1985). In particular the magnetic bands have been considered for a strong magnetic 
field (Aizim and Volkov 1984, 1985) and a one-dimensional superlattice potential V ( x ) .  
I n  this case the solution to the problem is simply given by considering the potential 
as a perturbation. More complciated and interesting also for its connections with the 
Stark-Wannier problem is, as we shall see in the following, the weak-field case. In  
the Landau gauge (with x in the place of y )  we have the Hamiltonian 

which, restricted to the vectors $(x, j,) = 4 ( x )  exp( iyk , /h) ,  becomes the one- 
dimensional Hamiltonian: 

H,, = H ~ + w ~ ( x - . Y ( ~ ) ~ = P ' +  V ( X ) + W ' ( . Y - X , ~ ) '  in L ' (R)  (1.2) 
where 

PB 
w ,  = - 

mc 
h h = -  d 

dx \% 
p = - ih  - 

w ,  being the cyclotronic frequency, - 

A being the magnetic length. Here V ( x )  is the superlattice's potential with period T 

and is even, i.e. V ( x )  = V ( - x ) .  Moreover we suppose V E  C', V ( x )  3 0 ,  V ( 0 )  = V ' ( 0 )  = 
0, V " ( 0 )  > 0. 
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4990 V Grecchi and A Sacchetti 

Let us call E , , ( k )  the band function of the original Bloch operator HR and let 
E:  = min E , , ( k ) ,  E:,  = max E,,( k )  be the band endpoints. As a further hypothesis about 
the potential V ( x )  we suppose in the following that all the gaps ( E : , ,  E: , , ) ,  n 3 1, 
are not empty. On the other side, the bidimensional Bloch operator X ( 0 )  has band 
functions 

(1.3) 
The magnetic band functions are defined as E, ( k ,  ) = e,, (xll), xo = -A k ,  , where E,, ( xo) 
are the eigenvalues of H,,). In  the following we shall consider only the functions 
e,,(xO) = e,(-x0) = e,,(xo+ n-), also called magnetic band functions. 

Hence the spectrum of the operator defined by the Hamiltonian X (  w )  is continuous 
and is the union of the magnetic bands B,,, n 3 1, B,, = {E,(xil)/xi,E B ' }  = [ e : ,  e:,]; here 
a'= (-7r/2, +n-/2] is the dual Brillouin zone. 

Actually, for w small (definitely not for w large) such magnetic band functions 
e,,(.q,) have most of the general properties of the Bloch band functions. 

In our case, fixing k ,  = -xO/h2 and making the single-band approximation, from 
% ( U )  we get 

PI H,,Pl = Hsd-%). (1.4) 
If we consider, by unitary equivalence, HsR( xo) in the crystal momentum representation 
we have the operator 

fi,,(x,,) = P l i l ( k +  h - ' A ) P l  (1.5) 
where A = (0, wx)  in the Landau gauge and k = ( k , ,  - x o / A 2 ) ,  in agreement with the 
Peierls substitution rule (see for instance Claro and Wannier 1979). By a further simple 
approximation we obtain the dual Bloch operator 

Fjr,(xo)=-w'-t E l ( k )  E l ( k )  = El (  k + 2 )  (1.6) 

7 ,  E,! ( k , ,  k ,  ) = E,, ( k ,  ) + h'kf = E,, ( k ,  ) + w-x,. 

d' 
dk' 

with xi,€ 3' as crystal momentum. 
In the energy region E Y S  e < E :  ( $  3) the semiclassical quantisation rule of Bohr- 

Sommerfield applied to (1.6) gives the Onsager-type relation (see for instance Pippard 
1969 and Guillot et a /  1988): 

(1.7) 
where Ac ( E  = f V ' E  - E l (  k )  dk  is the action area or, equivalently, 

In  this way, fixing n and letting w 40, we have the rigorous behaviour: 

E,, (X,)) = E p + w ( n - (1.9) 
Even more interesting is the energy region [ E \  + 6, E )  - 61, 6 > 0, ( 5  2) where we have 
the similar quantisation rule, for 0 s  x , , ~  x /2 ,  applied to (1.6): 

(1.10) 
where now A, (&)=Ii: J E  - E l ( k )  dk. Equation (1.10) gives the exlstence and  the 
semiclassical estimate for the magnetic band function. In  particular, for X , , E  [0, n-/2] 
fixed, we have the w J 0 behaviour: 

A( ( €,z(.Yo)) = 2( n - I . ) x w  + O( U ' )  as w J 0  

e,,(xl,) = A;1 [2(n-4)n-w] tO(w2)  w J O , n = l , 2  ) . . . .  (1.8) 

2 E ] (0 )  + O( w ' ) n = 1,2,. . . , X,)E 3'. 

A< ( €>n+ I '2  f I > (  XI)) ) = 2w ( nx * x,J) + 0( w ') as w J 0  

€ 2  , , A ,  1-I 2 ( X I , )  = e(2nn-w * . u , , w ) + O ( w ' )  

= E(2nn-w) * x,,we'(2n7w) + O ( w ' )  w l 0  (1.11) 
where € ( . ) = A : ' ( . )  and ~ ( 2 n x w ) ~ [ E ; t 6 ,  E!-6]. 
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The small x,, (x0 = 7r/2) monotone behaviour is given by a degenerate perturbation 
formula: 

(1.12) 

where lwx^/ = ~(4r) , lT1(0) ,  w ~ 4 ~ ~ ( 0 ) ) 1 =  ~ ' ( 2 7 r w ) + O ( w ) .  
Collecting the rigorous results for w small enough, we have as many simple magnetic 

bands as we want in the energy region ( E : ,  E ! )  defined by the band functions 
e,(x,) = &,,(xi)+ 7 r )  = E , , ( - x , ) .  The extreme band values ~ ~ ( 0 )  ( ~ , , ( 7 ~ / 2 ) )  are given by 
H, on L'(R') (H, on L'( ~ / 2 ,  x))  with Dirichlet-Neumann boundary conditions at 
x =O(7r/2); and, since e:,(O) = &',(n/2) =0, we have the divergence of the density of 
states at these energy values. The best method for understanding some of the above- 
mentioned results and  to obtain other heuristic estimates is the picture of x-dependent 
bands. Let E : " ( x )  = Eb, L+w'(x-.~, , ) l ,  lxo/ -s rr/2 (see figure 1). For E?:> E > E :  we 
have a double well model with wavefunctions concentrated in the region [ x i ,  x t l  U 

[x?, XI], where 

x : = . ~ ( , * d E  - E p / w  and x ~ = x i ~ * J E - E E ; / ~ .  

Let us note that the sign of &:(.xu) gives the concentration of the state in the two 
possible regions (wells) defined in figure 1 for x positive or negative; in fact we have: 

(1.13) 

and the sign of &:,(xu) determines the direction of the 'propagation' of the states in 
the y direction along a series of 'reflected arcs' (see for instance Pippard 1969, p 121, 
figure 3.2). For xO = 0, 7r/2 we have no propagation at all because both the opposite 
motions are allowed (with tunnelling between). In  this case H ( x , , )  is a symmetric 
double well Hamiltonian and  we have a splitting of the levels of the order of the square 

&:,(Xu) = -2w2(4n(x0L (x  -x(,)dn~x,l)) 

e 
x !  x l  I XO'O x i  x :  

x 

Figure 1. Picture o f  r -dependent  bands for .r,,=O and  energy €,,E ( E ' , ,  E r ) .  The regions 
! .Y~(X; ,X ;= -S?  = \  E, , -€ : /w,and!s i> . r : , . r l=- . r !  = , € , , - € r / w , a r e c . / a s s i c a / / ~ , , f b r b i d -  
d e n ;  so that we habe a double-well model.  

> >  
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of the Zener transmission amplitude through half a barrier. Such splitting is by 
definition the gap width and  it turns out to be exponentially small: 

3 E  = I G ( E ) I = O ( e x p { - C ( E ) / w } )  w l 0  (1.14) 

where 

k (  E )  is the crystal momentum in the first gap for the original Bloch operator H H .  

completeness. All the main results are valid for h = 1 as well. 
We consider the limit of small h (true semiclassical limit) only for the purpose of 

We also consider (in 8 3 )  a partially solvable model given by the operators: 

H:.,, = HH + W z ( X  - Xg)'+ w ( X  - X,,) COS 2X X g E  9' (1.15) 

where 

d' cos'22x 
dx' 4 

H --A'-+- + h ( l + s i n 2 x ) .  U -  

The first eigenvalue of H i , ,  is exactly given by 

E , ( X ( ] ) =  E y + w h  = h + w h .  

As announced above, we d o  not consider the case of large w since, as noted by Aizim 
and Volkov (1984, 1985), the magnetic bands are given by a perturbation of the 
degenerate Landau eigenvalues E,,(xI,)  = (2n - l)hw, n 2 1. In  this case the perturbation 
is the bounded operator V ( X )  and the unperturbed one is p2+w2(x-xU) ' ,  so that the 
perturbation theory of Kat0 applies for w > max) V (  x)i/ h. 

We have not exploited here the promising connections of the single-band approxi- 
mation of the magnetic field case with the electric field case of Stark-Wannier. 

After the completion of this work we received a very interesting paper by Helffer 
and Sjostrand where magnetic fields in crystals are rigorously treated (Helffer and  
Sjijstrand 1989). 

2. Magnetic bands in the first gap of the zero-field one-dimensional Bloch model 

Let % ( w )  be the self-adjoint operator (Cycon et al 1987) obtained by the closure of 
the formal operator (1.1) defined on Cl;(@'). By a Fourier transform in the y variable 
i t  becomes the direct integral X( w )  = jf H,(, dx,, of the one-dimensional positive 
operator 

Ifq = p 2 +  V ( x )  +"(X -x0)? (2.1) 

with domain D( H4,) = D( p ' )  n D(x'); here p = -ih d / d x  and h > 0 (for a definition of 
direct integral decomposition see Reed and Simon (1978) ch XI11 8 16). 

Since the potential goes to CC as x + *E, the eigenvalues of H,(, are simple (ch 111 
9: 3 of Voros 1982, ch 24 9: 1-9 5 of Naimark 1968). Moreover, H-, is an  analytic operator 
family in X , , E  C, w in the sector !Nu' > 0, so that the nth magnetic band function &,,(xu) 
is analytic in a strip around the real axis. 



Weak-jeld magnetic bands in superlattices 4993 

In this section we prove (theorem 2.6 and  remark 2.7) the existence of the magnetic 
band functions E,,(.Y,,) in the interval [ E :  + 6, €! - 61, 6 > 0, which are approximated, 
modulo O ( w " ' " ' ) ,  O c a  < 1, w.10, for X,]E 33', by the band functions ~ f l ( x , , )  of the 
Bloch operator obtained by the single-band approximation. 

We now briefly recall the crystal momentum representation (CMR, see Bentosela et 
a1 1988) which will be used in the following. 

Let us consider the unitary transformation 

U :  L2(iw) -+ j" * X " ( k  1 dk  It'(  k )  = 1' 
n 

+-+ ( U & ) ( k ,  K j = q ( k ,  K 1 = $ ( k +  K k e 9 3  K € Z  

where 4 denotes the Fourier transform of 4. The sequence { q ( k ,  K ) } K  
% ' ( k )  = I ? ,  for almost all k E  33, where -4 is the Brillouin zone (-1, +1]. 

Under this transformation the operator H H  = p ' +  V (  x )  becomes 

belongs to 

U H U U ~ - '  = H ( k )  d k  5 1 
where 

( H ( k ) a 1 ( K 1 = ( T ( k ) a 1 ( K ) + ( pa 1 ( K ) 

= h 2 (  k T K 1' - a(  K 1 + c V,a(  K - j )  
I Z  

for any a(  K )  of the form a (  K )  = ( U 4 ) ( k ,  K )  for some (1, E D (  HH) and for k fixed. 
Here V, denotes the j t h  Fourier coefficient of V ( V, E iw because V is even, i.e. 
V ( x )  = V ( - x ) ) .  H ( k )  has compact resolvent for any k and there exists a sequence of 
eigenvalues O <  € , ( k ) ~  E , ( k ) s  c E , , ( k )  d. . . with real-valued orthonormal eigen- 
vectors { u \ ~ ' ( K ) } ~ .  z,. . . , { U , ,  ( K  j } K .  k,. . . analytic in k if € , , ( k )  is simple, with the 
property O J ; ' ( - K ) = ~ ) ( K ) .  

For k fixed { € , , ( k ) } , : - ,  is the discrete spectrum of  the operator formally defined 
by HH with the boundary conditions 4(  n) = e'h"$(0) and 4'( n-) = e"'"$'(O). 

Such eigenvalues, as functions of k,  are called band functions and are analytic, 
even and  periodic with period 2; moreover they are strictly monotone in [0, 11. In  
particular, i n  the open interval (0, 11, the derivatives of E , , ( k )  are positive for n odd 
and negative for n even. Let 

E : ,=max  E , , ( k )  

( h i  

.E: = min E , , ( k )  
h A  h I i  

then v ( H H )  = U,:;' [ E : ,  E : , ]  is purely absolutely continuous. The closed interval 
[ E ! ,  €:,]is the nth band and the open intervals (-sc, E ; )  and (.E:!, E!..,) are the 0th 
and n t h  gaps. Now let us  consider the unitary transformation 

f i :L2( iw1+@;  ] L ' ( ; m  

CL -+ ( i'4 1 n ( k = ( w  :," )I 1, ( L'& 1 ( k ,  . I),: 

defined by 

Let us define the unitary transformation fi,] of H, ,  ( H , ,  = H, , ,  for x,, = 0 fixed) given by 

f i H , j f i - '  = fiB+u2fi.y2fi 
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where fi0 is self-adjoint with compact resolvent on the domain D(fi,,)= 
fi(D(x') n D( p ' ) ) .  Formally, we have: 

fi" = fi, + W ' (  i D + x )' 
acting on the vectors a =(a, , ) , ,  E $ : ~ ~ L ~ ( B )  such that a, E C'(93) Vn,  and only a finite 
number of the a,, are not identically zero, where: 

(fiBa),(k) = E,(k) * a , (k )  

( X a ) , ( k ) =  1 X,,,(k) * a,,(k) 
X 

,n=I 

Then the unitary transformation fik, of Hy,, is defined by: 

fi\, = fiB + w '( i  D + X - xu)'. 

Let us split the interband operator X into two terms: 

x = X ' +  @, 

w,=P;xP,+P,xP; = P;xP,+(PjxP,)*=P;[x, P , ] _ + ( P ; [ x ,  PI]_)*, 

where = fiW, fi-' and 

Here PI denotes the orthogonal projection on the first band: 

P I -  - --!- $,, ( p ' +  V -  z ) - '  dz 
2 Ti 

where r ,  is the positively oriented contour around the spectrum of the first band: 

E!- E: 
2 

dist(z,[Ey, E ' , ] ) = d = L > O  

and P', = 1 - P,  

Lemma 2.1. W ,  is bounded and its norm L ,  satisfies the following estimate: 

L ,  = / /  w,j/ s C,h '  ' if h < h,, (2.2) 
where C, > 0 and h,,> 0 are suitable constants. 

Proof: Relation ( 2 . 2 )  follows immediately, in fact (Avron 1979 and Bentosela e t a /  1988): 

Since V is positive we have that 
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so p is relatively bounded by p’+ V with relative bound U > 0 arbitrary. Then: 

where d = ( h / 2 ) m + O ( h 2 ) ,  l e n g t h ( r , ) =  I r h m + O ( h ’ )  and E:= 
( 3 h / 2 ) m + O ( h 2 )  if h < A l l  for suitable h , , > O  (see Harrell 1979 and Weinstein 
and Keller 1985). 

U If we choose U = h - ” 2  we have ( 2 . 2 )  with C, = 8 [ 2 +  1/-]. 

Let us define the symmetric operator formally given by 

1 
sk, = - ( P, + pj 5,<,pl = w [ i  D + X ’  - XI, ,  ct, I +  (2.3) 

acting on the vectors a = (a , , ) , ,  E e,:= , L’( 3) such that a,, E C’( 33’) V n ,  and only a finite 
number of a,, is not identically zero. Obviously S,<, is the term coupling the first band 
with the others in the operator I?%,. We have the following result. 

Theorem 2.2. ( i )  S,, is infinitesimally form-bounded with respect to k,, , i.e. 
Q ( f i , , )  = Q(S,,) and 

w 

V u  E Q( kJ V p  > 0 (2.4) 
l ( u , s , , u ) l ~ ( y - ~ E ~ ) ( u ,  ( L , ) 2  u ? + p ( u ,  k , ,u )  

where ( * ,  . )  is the inner product in 
( i i )  The sum in the form sense 

L’( 33). 

T,,( 77 1 = fi\, + (77 - OJ )S\<, 

is an analytic family of type ( B )  in the complex 77 plane. 
( i i i )  T,(,(T)) has compact resolvent for any 77 in the complex plane. 
( iv)  T,,(o) = P,  kL,p, + P I  kL,p;. 

Proof: ( i )  Let Q(ki,,) be the domain of the form defined by fi,,,. Since k”a0 then 

Q( kk, ) c Q( [ i D + X ’ - x,, + GI ] ) . 
Let Q( S,,,) be the domain of the form defined by S,(, . Since S\,, s W [  

it follows that 

Q(fi,,)= Q([ iD+X’-x , ,+  @,]‘)c Q(S,,,). 

Moreover, (2.4) follows from the positiveness of the operators ( 
the following estimates: 

/(U, S , , U ) ~  = 2/(w(i D + X’ - xI)) U, ctl u ) ~  

D + X ‘ - X I , +  ct,]?, 

’ and f i , 3  - E; ,  and 

( i i )  This follows from theorem 4.8 in ch VI1 of Kat0 (1984). 
( i i i )  This follows from ( i i )  and theorem 4.3 in ch VI1 of Kat0 (1984) since T J w )  = 

0 
E,, has compact resolvent too. 

(iv) This follows immediately from the definition of S%, in (2.3). 
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Let us call e,,(xl1, 77) the eigenvalues of T, , , (q) .  Since T, , (w)  = fiY,) the eigenvalues 
E,,(x,], w )  coincide with the magnetic band functions &,,(XI)). 

Now, we calculate the eigenvalues E:'(X~)) of the unperturbed operator T,,(Oj in 
the interval [ E ; + S ,  E ! ) ,  O <  6 <  E ! -  E',. In  particular we prove that they are the 
eigenvalues of the operator given by the single-band approximation. 

Theorem 2.3. For any X,)E a', 6 = Kw O, 0 < p < 1 and K > 0, the spectrum of T,,l(0) 
contained in the interval [ E : + 6 ,  E ! )  is not empty and consists of the eigenvalues 
E ; ~ ( X , ) ,  where e:"(x,,) is the n t h  band function of a Bloch model. 

Let A = 2nlrw so that 

A( ( E ! ) > A > A ,  ( E ' , + 6 ) > A ,  ( E ' , ) + C w p  w < 00 ( 2 . 5 )  

where C > 0 is proportional to K, U,,> 0 and A( (8) is the classical action defined 
below. Then the eigenvalues E ~ ~ , ,  2 ,  I ?(x0) must satisfy the following: 

A+2xow=A< ( € S B + i  Z t i  2(xo))+O0(w2) wJO,x,)E 33' (2 .6)  

and in particular: 

where E ( .  ) is defined by the inverse function E - ' (  E )  = A( ( E ) .  

Proof: Let us define the single-band operator: fIs,(x0) = P , f i Y ( , P , .  Since T,,(O) = 
Pi fi,,Pl + P {  fiy,lP { we have 

a( T,,(O)) = a( f i S " ( X 0 ) )  U a( P', fi\,,P I ). 
Since 0 ( P { f i , , , P { ) c [ E ! , a )  we have a(T,<,(O))n(-cc, E ~ ) = a ( f i s B ( x , , ) ) n ( - o c ,  E ! ) .  
Hence to calculate the spectrum of TJO) in the interval (-CO, E ! )  it is sufficient to 
consider the sin:le-band approximation: 

fiS,,(X,l) = Plfi,<,Pi = Pi T\,,(O)P, 

= U' (  - D' + ( @;) ,, ( k ) + (xi ,, ( k 1 - x,,)' + i[ D, X ,  ( k )  - xOl+) + E ,  ( k )  

= exp[-ix,,(k + 1 ) I ( - w ' D ~ +  ~ , ( k )  + w ' (  @i)l , i (k))  exp[ix,,(k + 1 ) I  ( 2 . 8 )  
with periodic boundary conditions, where X i , l  = O  and ( @ f ) t , , ( k )  is the multiplication 
operator X,+l X , > , ( k )  * X,, l (k) .  

Equation ( 2 . 8 )  is equivalent to the operator defined by 

- w'D'+ E , (  k )  + w' (  @ ; I i , , ( k )  

CL ( 1 ) = e'' '"t+!~ ( - 1 ) 

k € [ - 1 ,  + 1 ]  = 3 (2.9) 
with boundary conditions 

t+!~'( 1 )  = e"'[it+!J'(- 1 ) .  (2.10) 
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Therefore for fixed w and X,,E 93’ we have another band function sequence {E;’(X(,)},, ; 
93’= ( - a / 2 ,  + 7 / 2 ]  is the dual Brillouin zone, Hence for the implicit determination 
of such bands we shall use the analyticity and monotonicity properties of the band 
functions. Since ( k )  is bounded, we treat each operator (2.9), (2.10) as a regular 
perturbation of the following operator: 

fil,(.~(l) = -w’D’+E, (k )  (2.11) 

with boundary conditions (2.10). Hence we have again a band function sequence 
F!,)(X(]), X”E d’, of HI,(x(,), with monotonicity in xg ,  OSX( ,S  7 / 2 .  

It is well known (ch IV $ 3  of Erdelyi (1956) and  ch IV § $  1, 2 of Voros (1982)) 
that the differential equation 

(2.12) 

has two linearly independent solutions 
formal solutions: 

, IJ+ = asymptotic to all orders to the 

VII r l ( k )  = U - ’  exp( I*, u ( 7 )  d r ) .  (2.13) 

Here U( k )  is a formal real function u ( k )  =E;=,) u2 i (k )w2’ ,  uniformly over 8, where uo 
is given by u , ( k )  =d%‘ - E , ( k ) .  Moreover the coefficients U’,( k )  are periodic as E , (  k )  
and 

u ( - l ) =  u ( 1 )  and U ’ ( - 1 ) =  u’(1). 

Let us set A,: = X,?=(, 5 fl U:,( k)w” dk, where 

is the classical action function. 
Now let I J =  aIJ++b$- be a generic solution of (2.12) with ( a ,  b ) #  (0,O). By the 

torus conditions (2.10) on 4 we have that a and h must satisfy the following system 
of formal equations: 

a [VI + ( 1 ) - e ” W ( - 1 ) ] + h [ VI ( 1 ) - e ”W - ( - 1 )I  = 0 

a [  \I’>( 1 ) - e”W’ : (  - 1 ) ]  + b[ VI L(  1 1 - e”  W L (  - 1 ) ]  = 0. 

Since ( a ,  b )  -Z- (0,O) the determinant of the system must be zero so that, by some 
calculations, we obtain the asymptotic formula: 

cos(2x,,)-cos - = O ( w l 2 ‘ + l ’  ) w 10, N 2 1 arbitrary. (2.14) 
(A:) 

Thus  we obtain 

A?< = 2 n v w  * 2x,,w + O( w ’ +’ j 

A& = 2 n ~ r w * O ( w ” ” )  

where y ,  = O ( w  ’ ), whence the following asymptotic equation in 8: 

w 1 0  uniformly for x ~ ,  E [ yI , 7 / 2  - yl] 

w 10 uniformly for X ~ , E  [0, y l ]  U [ a / 2  - yI , 7 /21  

A*2x0w + O ( w ’ )  = Ac (8) W J O .  
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Therefore the hypothesis ( 2 . 5 )  and the monotonicity of the band functions 8 : ( n ,  xlj)  
in 0 s  x g s  77/2, yield the asymptotic behaviour: 

8, ( n, xl1) = e (  A * 2x,,w + O( w 2 ) )  

(2.15) 

Then the spectrum of fi,,(xll) and f iSB(xo)  in the interval [ E l  + 6 ,  E ! ) ,  is not empty 
and  we have the asymptotics of the eigenvalues. From the band theory, applied to 
the operators (2.9) and  (2.11), we have the monotonicity of E~:(x(]) and E;"(X 0 ) In . .yo 

with O s x , , ~  ~ / 2  and  the following asymptotic behaviour of the band functions: 

E : : + , (  X(]) = &:,71(x,,) + O( w ' )  = 7,( n, x,) + O ( w ' )  

€ 2 , , ( X l l )  = & 2 , , ( x o ) + o ( w 2 )  = Z-(n,  X ( ) ) + 0 ( W 2 )  

w i 0  

w L O .  0 SH I> 

Remark 2.4. For xo = 0 the eigenfunctions and  their derivatives are even or odd, hence 
the asymptotics: 

(2.16) 

From (2.7) we get immediately the following estimate for the isolation distance d,z(xll) 
of the nth eigenvalue: 

d,, ( xlJ) = C2w [ min{x,, , n /  2 - xo} + O( w )I  w i o  

uniformly for X,,E ( y 2 ,  7r/2 - y 2 )  where y 2  = w " ,  O <  cy < 1, and  A = 2[;]rrw.  Moreover 
we have the following estimate of the gap width: 

G:'= G ! ' + O ( w ' ) = O ( w ' )  w J 0  (2.18) 

where 

GS,: 1) = E 5 B  1) ',,-I (0)  - e l !  "(0) G5l3 2 , , -  I) , = F ! "  _,, I )  (77/2) -€:::-I;( 77/21 n 5 1. 

The estimate of the instability gap and the asymptotic expansion for the eigenvalues 
E ;~ (X( ) ) ,  xO = 0, 77/2, can be also obtained starting from the ones gicen in Weinstein 
and Keller (1987). In particular, they proved that the eigenvalue E!I)(xo), for x,)=O, 
of the operator defined in (2 .1  1 )  with periodic boundary conditions has the following 
asymptotic expansion: 
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where r m ( A )  are the imaginary parts of the solutions E , ( k )  = € ( A ) ,  € ( A )  2 E :  + K w p ,  
K > 0, O<p < 1. Hence the nth gap width G!: is exponentially small for small w ( a  
similar behaviour is obtained for .uo = i7/2). 

Thus, introducing the bounded perturbation w' (  6';),,l(k), we obtain a gap estimate 
in agreement with the one given in (2.18). 

Now we are ready to describe the behaviour of the magnetic band function F , , ( X ( ~ ) ,  

E, , ( xO)E[E?+S ,  E t - S I .  In  particular we prove theorem 2.6 and remark 2.7,  the 
existence of the eigenvalues e,,(xo), X,,E a', and we approximate them, 
modulo O ( w " " ) ,  O<a < 1, w L 0 ,  by the unperturbed one. 

Let us state the following technical lemma. 

Lemma 2.5. For any w > O ,  O < W ( , ,  there exist v 0 > w ,  K > O  such that for any CY, 

O < c u < 1 , a n d f o r a n q . u I l ~ ( y 2 ,  n / 2 - y 2 ) ,  y2=w",theresolvent R ( z ,  7 7 ) = [ T , , , ( v ) - z ]  I 

is analytic in  77 for 1771 < vu, for any z E I' fixed, if the unperturbed eigenvalue E ; ~ ( . U , , )  

lies in [ E : + S ,  E ) - S ] .  Here 6 =  K w " ' - " '  and I' is the circle around F ; ~ ( X ( ) )  with 
radius d, = O( w"+ ' " ) .  

Moreover, there exist h,, > 0, C3 > 0 such that K = ( C'3h2) ' '3  for h < h,, . 

Proof: Let us consider the resolvent 

R ( z ,  7 7 )  = [ TJ77) - z1-I 

d,, = i 

z E I' 
where r is the circle around E ; ~ ( . U , , )  with radius (see 2.17) 

inf d, ( x,,) = 4 C2( w It'' + O( w ' ) ) = O( w I+" ' 1 w l 0 .  \,,. lyl .7r 2 ~ y 7 l  

The resolvent admits the following power series expansion in 7 (see Kat0 (1984) ch 
VI I ,  formula 4.20): 

R ( z ,  q ) =  R(z,O)+[T\ , , (O)+p]-I  ' [ T , , ( O ) + p ] R ( z , O )  

(2.20) 
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where C4= C 3 h 2  for h < h,, as in lemma 2.1, 

E y ( X o )  - Et)' 
h 

Now, lemma 2.5 follows immediately from the above estimates. I n  fact we fix q,,= 
-, so that, by (2.201, 

r,, 2 T o  = J:. 
Now we impose the condition qo> w, obtaining the following inequality: 

(2 .21)  

Equation (2.21) is satisfied if we choose 6 C 2 / 2 C 4 >  for w < wo,  wo> 0 small, i.e. 

6 = ( w I - * C l h ' ) 2 ' 3  h < h ,  O < c r < 1 .  0 

Our main result is the following. 

Theorem 2.6. There exist U(, > 0, K > 0 such that for any a, 0 < a < 1 ,  x , ~  E ( y z ,  77/2 - y2 ) ,  
yz = w e ,  w < w,,, the spectrum of f i q ,  in [ E :  + 6, E! - 61, 6 = Kw2"-'"'' , consists of the 
eigenvalues: 

E,  (X") = E y (  x,) + O( w I + < ? ' )  = E :;( xo) + O( w ( I + ( ?  1 )  w3.0 

(2 .22 )  

where A = 2 [ : ] 7 ~ w  is such that A,-(,!?!- 6 )  2 A 2 A( ( E :  + 6) .  Here € ( A )  is the inverse 
function of the classical action A,.( 8). 

Moreover there exists h,,>O such that for h < h,] ,  K = ( C 3 h 2 ) 2 ' 3 .  

Proof: Let e : ' ( x , , ) ~ [ E : + 6 ,  E : - 6 ]  as we have shown in theorem 2.3. From lemma 
2.5 the resolvent R(z ,  77) is analytic in  77, 171 < q0, q0> w, for any fixed x E r. Hence 

encloses E,,(x~J and &zH(x,,), so that: 

I E , ( X o ) -  E : ~ ( X , , ) I S  d,, =O(W" ' " ' )  w 3 . 0  

and so (2 .22)  follows from formula (2 .7 )  given in theorem 2.3.  0 

Remark 2.7. For any X,]E [0, y l ] u [ ~ / 2 -  y r ,  77/21 we have similar results for the 
couple of eigenvalues ~ z , , + ~ ( x d ,  E~,,(x,J, for X ~ E  [O, Y ~ I ( E ? , ( X ~ ,  E~,,-~(XJ, for x l 1 ~  
[77/2-  y z ,  77/21), as can be seen from the degenerate pertrubation theory applied to 
a couple of eigenvalues enclosed in a path r with its points separated by at least 
O(w"+" ' ) ,  O <  a < 1 ,  from both eigenvalues. 

In  particular we obtain the following asymptotic behaviour for any X,,E 96": 
E,(X(J = E Z H (  x,,) + O( U '  I + < "  ' ) = E!: (  x,,) + O( 01 I + ' '  ,) @ l o  

(2 .23)  
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The two eigenvalues in the couple can approach without crossing each other for 
O S  7 s w. By (2.23) we have an upper bound for the minimal distance o f the  eigenvalues 
of the order of O ( w ' l + " ' ) ,  w J 0 .  I n  particular we estimate the magnetic gap width as 

G,, = O( w ( l + " ' )  w 3.0 where G,, = - E : , .  

The small w asymptotics at x0=O of the eigenfunctions c L 2 ,  ( $ 2 n + l )  are given by 

( (Lrn ) (m ,  k )  = SY"rL3F(k)+O(w) ( $ 2 n + l j ( m ,  k )  = 8; '$:F+I(k)+O(w)  

where the asymptotics of $:R( k )  ( 

better estimates: 

k ) )  are given in (2.16). 
Moreover, for xo E 3' fixed and F (  A)  E [E ' ,  + 8, E! - 81, 8 > 0 fixed, we have the 

e,(x, , )  = &:H(X'J+O(W2) = & ~ ( x o ) + o ( w ~ )  W J O  

Remark 2.8. The estimate of the gap width G, given in remark 2.7 is far from being 
optimal; in fact the following heuristic calculus proves that the magnetic gap width 
Gzn s G( E )  = E ~ , , & ~ ( O )  - e Z n ( 0 ) ,  E = E ? , , , , ( O ) ,  is of order O ( e - <  '") (or equivalently 
G2n+l S G ( E  j = ~ ~ , ~ , ~ ( r / 2 )  - n/2),  E = ~ . ? ~ + ~ ( r / 2 ) )  as the unperturbed one 
(remark 2.4) where C = C( E )  > 0, w J O  and E E ( E : ,  E ; ) .  

This estimate comes from the x-dependent band picture as illustrated in the 
introduction and in figure 1: we consider the problem at xo = 0 as local1.y Bloch with 
x-dependent bands: E t ' h ( ~ )  = E:"+w'x', so that a gap acts locally as a potential 
barrier with Zener exponential behaviour of the solution d, i.e. 

4 ( x z )  = 4 ( x l )  e x p [ ~ x ( E ( x , ) ) ( x , - x , ) l  

where X ( E ) = I Z k ( E ) I ,  k ( E )  being the crystal momentum in the gap. Hence the 
exponential decay of the wavefunction, i.e. the transmission amplitude T (  E ) ,  from 
the extreme 2 to the middle of the barrier is given by exp(-ji  x ( E ( x ) )  d x )  where 
2 = t E - E : / w .  So we estimate the gap as the splitting of the double-well beating effect: 

G ( E ) = T'( E ) ex p( -2 1: ,y ( E ( x )  ) dx)  = e ' E '  (2.24) 

where 

x2-.xI = nr, E ( x 2 )  E ( E : ,  E ! ) ,  as w J O  

O J O  

Remark 2.9. Using the degenerate perturbation theory applied to the analytic family 
of type ( A )  H,+ Wq,, W,,= wx0(2wx)+w2x~ ,  we can control the magnetic band 
functions for x0 in a neighbourhood of 0 ( r / 2 ) .  

We use the degenerate perturbation theory, for /xo/ << ( r e ' (  A ) / 2 m ) ,  for the two 
states 2 n  + 1 and 2 n  since 

1 E 2 n + 1 ( 0 )  - E 2 n ( 0 ) /  = O ( w ' )  

and 

I E ~ , ~ ( O ) - E ~ , ~ ( O ) /  5 ~ T F ' ( A ) u  +O(W' )  m f n, A = Z n r w .  
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U p  to the first order in xo, we have all the 'avoided crossings' of F ~ , , ~ ~ ( x ( , ) ,  E ? , , ( X , ~ )  

nearx, ,= 0. In particular, if we call A , ( x , , )  = ~ ~ , , + ~ ( x , , ) ,  A - ( X ( ~ )  = ~~, , (x , , ) ,  w.? = ( d2n+l(0),  
wxd',,(  0)), where d,,( xo) is the normalised eigenvector associated with the eigenvalue 
e,,(.q,), we have 

with the two behaviours: 

where (2.27) is in agreement with (2.22) for IxlI/ 3 w " ,  O <  cy < 1,  if (as can be easily 
checked by (2.16)) :  

lwx^l = / ( 4 2 n + , ( 0 ) ,  wx42n(o)) l  

(2.28) 

where 

From (2.25) and (2.28) we obtain the monotonicity of A,(x,,) for Ix0l s w " ,  O <  a < 1. 
Similarly we can control the magnetic band function in a neighbourhood of 7r/2. 

From (2.22) and remark 2.9 we can state the following. 

Proposition. The magnetic band functions satisfy the following equations for w small 
enough: 

n odd 
n even 

e:, = max, &,,(x0) = 
'ill< A 

with all the magnetic gaps ( E : ,  E : + , ) ,  n 2 1, not empty since H,, has simple eigenvalues. 

Remark 2.10. For reasons of completeness we give the following upper bound for 
€:,(XI)) ( '  means d idx , ,  w fixed), very similar to the estimate given for the band function 
of a Bloch operator (see theorem 2.1 of Avron and Simon 1981):  

Ie:,(xo)I ~ ~ w J F , , ( x ~ J -  E: XoE B' ,  w > 0. (2.29) 
In fact, by the Schwarz inequality 

I&:,(XO)/ = 2w'l(dn(xo), (x-x0)4,,(xo))I 

2w\l!'E,(XO) -(d,,(xo), ( P 2 +  v)4p , (xo) )  
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Moreover, we can also obtain an upper bound for d~,,(x,,)/ciw for x l , ~  23' and w > 0: 

(2.30) 

3. Magnetic bands in the first band energy region of the Bloch model 

For small w there are magnetic bands in the first band region [ E ? ,  E : ]  of the Bloch 
model, We recall that for small h the band width is exponentially small: E\ - E ;  = 
e-' ' I ,  C > 0 (see Harrell 1979), so that for the asymptotic estimates below (equation 
(3.1)) we should take U<< e-' " for small h. 

As above, the union of the magnetic bands is the spectrum of the operator 

% ( U ) =  H,dx,. Ib 
The bands are completely given by the perturbation theory, but not explicitly as in the 
gap region. Only for n fixed d o  we give an explicit asymptotic behaviour (equation 
(3.2)). In the case of a particular model we give explicitly the h, w behaviour of the 
first magnetic band. 

Theorem 3.2. For any X,,E 3', the spectrum of H,,, i n  the interval [ E ? ,  E : ] ,  is given 
by the magnetic band function satisfying the following asymptotic behaviour: 

&,,(X,)) = Ef:(x,,) + O ( w ' )  = E : " ( X O )  + O ( w ? )  (3.1) 

Each magnetic band in [ E ' ; ,  E :  - K w ' ] ,  O <  p < 1, K > 0, has band width vanishing at 
least as O ( w ' )  and the isolation distance vanishing as O ( w )  for w J O .  

w L O ,  .Yo E 3'. 

Moreover, for n fixed we have the following asymptotic behaviour: 

&,(Xo) = E Y + w ( n  -A)\ 2 E 1 ' ( 0 ) + 0 ( w 2 )  w J 0 , n s l .  (3.2) 

Proof Mimicking the proof of theorem 2.3, we give the single-band approximation of 
the operator (2 .1):  

d2  
dk-  

ks,( XU) = - w --T + E ,  ( k ) + w 2 (  6':) I .  I ( k ) 

with boundary conditions (2.10). Since ( 6 ' ; ) l , l ( k )  is bounded, the band functions of 
the single-band approximation in the interval [E: ,  E',] are, modulo O ( w ' ) ,  given by 
the Bloch operator 

, d' 
d k 2  k D ( X 0 )  = -U--+ E , ( k )  with boundary conditions (2.10). (3.3) 

Its band functions are calculated by Harrell (1979) and Weinstein and Keller (1985, 
1987). In particular Harrell (1979) and Weinstein and  Keller (1985) prove, under some 
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hypothesis on the potential, that the mean values of the band functions for n fixed 
are asymptotically given by 

- 
F ! , )  = E;+ w ( n  - 4 ) v J 2 ~ 1 ( 0 )  + o ( w ' )  w J O , n < N ( w )  

and the band width is exponentially small: I F ] , ) ( O )  - E : , ) (  n / 2 ) /  = O ( e - '  '"), C > 0. 
Hence 

- 
E : ' ( X g )  = E ; + o ( w ' )  

= E : + w ( n  -;)w'2~:(0)+0(w') w.10, n < N ( w ) ,  X(,E 93' 
(3.4) 

and 

G:'= GY+O(w' )  = w v 2 2 ~ ( 0 ) + 0 ( w 2 )  w.10, n <  N l o ) .  

Since the isolation distance is of the order of wJ2EY(O), we can apply the perturbation 
theory as in lemma 2.5 and  theorem 2.6, choosing the radius of the circle as d,, = O ( W ' ) ,  
for w L O ,  without any discussion at the endpoints of the interval [0, n / 2 ] .  In particular, 
the series (2.19) is convergent for 7 such that w, uniformly for X"E 9'. 
Hence, by (3.4), we obtain the asymptotic expansions (3.2). 

We must only require that our potential E , ( k )  in (3.3) satisfies the hypothesis of 
the theorems given in Harrell (1979) and  Weinstein and Keller (1985) cited above. 
This is easily proved; in fact E , ( k )  is analytic in a strip around the real axis, it is even 
and  satisfies the inequality (see Avron and Simon 1981): 

70, 

Now, let us consider all the magnetic band functions in the interval [E: ,  E : ] .  As 
above, we use the semiclassical results (see Weinstein and Keller 1987) for the operator 
(3.3). 

I f  n satisfies the inequalities 

for some C > 0, C ' >  0, O <  /3 < 1, O <  /3 '< 1, then the band functions F ; ( X , , )  at the 
endpoints satisfy the asymptotic inequalities 

E;+ K ' w P  d E : , ) ( X " ) ~  E :  - K o P  Xg = 0,  3712 
where K > 0 is proportional to C, K ' =  C't'2E';(O)> 0, and the gap width G," has the 
following behaviour as w J 0: 

where * E  are the classical turning points, i.e. E, (*E)  = E,". 

Hence G:'= GF+O(w')= C 5 w .  
Since the isolation distance of the eigenvalue E : ' ( X ~ )  is greater than Csw, we obtain 

the asymptotic behaviour (3.1) applying the perturbation theory as done in lemma 2.5 
and theorem 2.6 with the choice d ,  = O ( w ' ) .  

Moreover, since the unperturbed band function E r(x,,) has exponentially small 
band width, we can estimate, by (3.11, the band width as O(o') and the gap width as 
O ( w ) .  
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Finally, we can also estimate the band functions F::(X~)), x , ,=O,  ~ / 2 ,  near the top 
E :  starting from the result that: if n = [ l / m o )  5 il t E :  - E , ( k )  dk  then f::(x0) = 15: and 
the gap is estimated as: 

Gj: C,w C,= 2aE: (  v El - E l ( k )  d k )  I. 
n 

Hence E ~ ' ( X ~ )  = E :  and G:'= G r + O ( w ' )  = O ( w ) ,  0.140, and using the perturbation 
0 theory we complete the proof of estimate (3.1 ). 

We conclude the present section by considering a solvable problem giving a totally 
flat first magnetic band: 

, d' , , cosz 2 s  H L,, = - h-  7 + U - (  x - xO)- +- + h ( 1 + sin 2x ) + w [ x - xo) cos 2x 
d x -  4 

= (- h %+ d W [  x - x,,) + - 2 c o s 2 x ) ( h ~ + o ( x - x I I ) + -  cos 2 2x ) + h + h w  

with x,-independent first eigenvalue h + hw and eigenvector 

Here V(x) = &os2 2x + h(  1 +sin 2x). Thus we have a flat first magnetic band function 

e , (xO)=  E y + h w = h + h o  

in agreement with the behaviour given in theorem 3.1. 
Actually, the term w ( x  -xxo)cos 2x enables the model to only asymptotically 

approach the class considered above as w J 0. We recall that each true magnetic band 
is flat in the o J O  limit. 
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